K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

8 tháng 2 2017

19 tháng 8 2017

19 tháng 11 2018

Chọn C

Ta có: nên (1) và (2) có nghiệm.

Cách 1:

Xét: nên (3) vô nghiệm.

Cách 2:

Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:

(vô lý) nên (3) vô nghiệm.

Cách 3:

Vì 

nên (3) vô nghiệm.

20 tháng 9 2019

23 tháng 5 2019

NV
22 tháng 1 2024

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)

\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)

\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)

\(\Leftrightarrow...\)

NV
7 tháng 11 2021

Với \(cosx=0\) ko phải nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow tan^2x-4\sqrt{3}tanx+1=-2\left(1+tan^2x\right)\)

\(\Leftrightarrow3tan^2x-4\sqrt{3}tanx+3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

14 tháng 3 2017

Đáp án C

Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.

Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.