Tìm số có bốn chữ số, biết rằng số đó cộng với số có hai chữ tạo bởi chữ hàng nghìn, hàng trăm và số có hai chữ số tạo bởi chữ số hàng chục, hàng đơn vị của số đó ta được tổng là 7968.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài: abcd + ab + cd = 7968
100xab + cd + ab + cd =7968
101xab +2xcd=7968 (1)
Ta có thể viết lại theo đề bài như sau:
abcd
+ ab
cd
7968
Nhìn vào cách đặt phép tính ta thấy phép cộng có nhớ sang hàng trăm. Mà đây là phép cộng 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy ab chỉ có thể là 77, 78, 79. Thay các giá trị của ab vào (1) ta có:
a=77 thì cd =95/2 (loại)
a= 78 thì cd = 45 (nhận)
a= 79 thì cd =7968 -7979 /2 (loại)
Vậy số đó là: 7845. Thử lại: 7845 +78+45 =7968.
Theo đề bài: abcd + ab + cd = 7968
100xab + cd + ab + cd =7968
101xab +2xcd=7968 (1)
Ta có thể viết lại theo đề bài như sau:
abcd
+ ab
cd
7968
Nhìn vào cách đặt phép tính ta thấy phép cộng có nhớ sang hàng trăm. Mà đây là phép cộng 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy ab chỉ có thể là 77, 78, 79. Thay các giá trị của ab vào (1) ta có:
a=77 thì cd =95/2 (loại)
a= 78 thì cd = 45 (nhận)
a= 79 thì cd =7968 -7979 /2 (loại)
Vậy số đó là: 7845. Thử lại: 7845 +78+45 =7968 (đúng)
Theo đề bài: abcd + ab + cd = 7968
100xab + cd + ab + cd =7968
101xab +2xcd=7968 (1)
Ta có thể viết lại theo đề bài như sau:
abcd
+ ab
cd
7968
Nhìn vào cách đặt phép tính ta thấy phép cộng có nhớ sang hàng trăm. Mà đây là phép cộng 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy ab chỉ có thể là 77, 78, 79. Thay các giá trị của ab vào (1) ta có:
a=77 thì cd =95/2 (loại)
a= 78 thì cd = 45 (nhận)
a= 79 thì cd =7968 -7979 /2 (loại)
Vậy số đó là: 7845. Thử lại: 7845 +78+45 =7968.
Theo đề bài: abcd + ab + cd = 7968
100xab + cd + ab + cd =7968
101xab +2xcd=7968 (1)
Ta có thể viết lại theo đề bài như sau:
abcd
+ ab
cd
7968
Nhìn vào cách đặt phép tính ta thấy phép cộng có nhớ sang hàng trăm. Mà đây là phép cộng 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy ab chỉ có thể là 77, 78, 79. Thay các giá trị của ab vào (1) ta có:
a=77 thì cd =95/2 (loại)
a= 78 thì cd = 45 (nhận)
a= 79 thì cd =7968 -7979 /2 (loại)
Vậy số đó là: 7845. Thử lại: 7845 +78+45 =7968.
Giải:
Theo đề bài ta có:
\(\overline{abcd}+\overline{ab}+\overline{cd}=7968\)
\(100.\overline{ab}+\overline{cd}+\overline{ab}+\overline{cd}=7968\)
\(101.\overline{ab}+2.\overline{cd}=7968\) (1)
Ta có thể viết lại đề bài như sau:
\(\overline{abcd}\)
\(\overline{ab}+\overline{cd}=7968\)
Nhìn vào cách đặt phép tính ta thấy phép cộng nhớ sang hàng trăm. Mà đây là phép cộng có 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy \(\overline{ab}\) chỉ có thể là 77;78;79 mà thôi. Thay các giá trị của \(\overline{ab}\) vào (1) ta có:
\(\overline{ab}=77\) thì \(\overline{cd}=\dfrac{191}{2}\) (loại)
\(\overline{ab}=78\) thì \(\overline{cd}=45\) (t/m)
\(\overline{ab}=79\) thì \(\overline{cd}=\dfrac{-11}{2}\) (loại)
Vậy số cần tìm là 7845
Tham khảo : Câu hỏi của Dương Thị Mỹ Hạnh - Toán lớp 5 - Học toán với OnlineMath
Theo đề bài: abcd + ab + cd = 7968
100xab + cd + ab + cd =7968
101xab +2xcd=7968 (1)
Ta có thể viết lại theo đề bài như sau:
abcd
+ ab
cd
7968
Nhìn vào cách đặt phép tính ta thấy phép cộng có nhớ sang hàng trăm. Mà đây là phép cộng 3 số hạng nên hàng trăm của tổng nhiều nhất là 2. Vậy ab chỉ có thể là 77, 78, 79. Thay các giá trị của ab vào (1) ta có:
a=77 thì cd =95/2 (loại)
a= 78 thì cd = 45 (nhận)
a= 79 thì cd =7968 -7979 /2 (loại)
Vậy số đó là: 7845. Thử lại: 7845 +78+45 =7968.
Các số lẻ có bốn chữ số khác nhau trong đó số tạo bởi chữ số hàng chục và hàng đơn vị gấp 5 lần số tạo bởi chữ số hàng nghìn và hàng trăm là :
1365 ; 1785
Bạn xem có đứng ko
Ko đúng thì bảo mik nhé
tăng tăng