tìm x, biết
a, (x-1).(x+13)=10
b, x.(x+3)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
a: -2x(x+3)+x(2x-1)=10
=>-2x^2-6x+2x^2-x=10
=>-7x=10
=>x=-10/7
b: Sửa đề: 2/3x(9/2x+1/4)-(3x^2+2)=3
=>3x^2+1/6x-3x^2-2=3
=>1/6x-2=3
=>x=30
b) \(9x-2:3^2=3^4\)
\(9x-2:9=81\)
\(2:9=9x-81\)
\(\dfrac{2}{9}=9x-81\)
\(9x=81+\dfrac{2}{9}\)
\(9x=\dfrac{731}{9}\)
\(x=\dfrac{731}{9}:9\)
\(x=\dfrac{731}{81}\)
\(a.5x-5^2=10\) \(b.9x-2:3^2=3^4\)
\(5x=10+5^2\) \(9x-2=3^4.3^2\)
\(5x=35\) \(9x-2=729\)
\(x=35:5=7\) \(9x=729+2=731\)
\(x=731:9\)
\(x=\dfrac{731}{81}\)
\(c=10x+\left(2^2\right).5=10^2\)
\(10x+20=100\)
\(10x=100-20\)
\(10x=80\)
\(x=80:10=8\)
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3
b) \(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x+1=0\)
\(\Leftrightarrow x=1\) hoặc \(x=-1\)
c) \(x^2-6x+8=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
(do \(x^2+1\ge1>0\))
\(a,-\dfrac{13}{20}+x=\dfrac{-11}{15}\\ \Rightarrow x=\dfrac{-11}{15}+\dfrac{13}{20}\\ \Rightarrow x=-\dfrac{1}{12}\\ b,\left(x-3,5\right):3\dfrac{1}{2}-2,5=-1\dfrac{3}{4}\\ \Rightarrow\left(x-\dfrac{7}{2}\right):\dfrac{7}{2}-\dfrac{5}{2}=\dfrac{-7}{4}\\ \Rightarrow\left(x-\dfrac{7}{2}\right):\dfrac{7}{2}=\dfrac{3}{4}\\ \Rightarrow x-\dfrac{7}{2}=\dfrac{21}{8}\\ \Rightarrow x=\dfrac{49}{8}\)
\(a,ĐKXĐ:x\ge1\\ 13-\sqrt{x-1}=10\\ \Leftrightarrow\sqrt{x-1}=3\\ \Leftrightarrow x-1=9\\ \Leftrightarrow x=10\\ b,ĐKXĐ:x\in R\\ \sqrt{\left(2x-1\right)^2}-1=3\\ \Leftrightarrow\left|2x-1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=-4\\2x-1=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
x thuộc N hay z zậy bạn
a) (x-1).(x+13)=(-1).(-10)=10.1=5.2=(-5).(-2)
bạn thửa vào và thay thế là được