Tìm x biết
a) xy=-31
b) (x-2)(y+1)=23
Giải ra nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (x+1)(y-2)=-2
nên x+1; y-2 là các ước của -2
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}
b) Ta có: (x+1)(xy-1)=3
nên x+1;xy-1 là các ước của 3
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)
c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vây: (x,y)=(-1;1)
d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)=(0;0)
a.
$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$
Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$
b.
$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$
Do đó:
$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$
Đến đây thì đơn giản rồi.
c.
$x(y-2)=-19$, bạn làm tương tự
d. Tương tự
1/
a)5x – 20y=5(x-4y)
b) 5x.(x – 1) – 3x(x – 1)=2x(x-1)
c) x.(x+y) – 5x – 5y=c) x.(x+y) – 5(x+y)=(x-5)(x+y)
2/
a)x2 + xy + x = x(x+y+1)=77.(77+22+1)=77.100=7700
b) x . ( x – y ) + y . ( y – x )=(x-y)(x-y)=(x-y)2=(53-3)2=2500
3/
a) X + 5x2 = 0
⇒x(x+5)=0
⇒hoặc x=0
x+5=0⇒x=-5
b)x + 1 = ( x + 1 )2
⇒(x + 1)-( x + 1 )2 =0
⇒x(x+1)=0
⇒ hoặc x=0
hoặc x+1=0⇒x=-1
a) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x+y}{5+6}=\dfrac{44}{11}=4\)
=> x = 4.5 = 20.
=> y = 4.6 = 24.
b) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{3x-y}{15-6}=\dfrac{63}{9}=7\)
=> x = 7.5 = 35.
=> y = 7.6 = 42.
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{270}{30}=9\)
=> x = 9.5 = 45.
=> y = 9.6 = 54.
d) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{120}{30}=4\)
=> x = 4.5 = 20.
=> y = 4.6 = 24.
câu c,d ở bạn trên làm sai rồi nhé
\(c,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)
\(xy=270\Rightarrow30k^2=270\\ \Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15;y=18\\x=-15;y=-18\end{matrix}\right.\)
\(d,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)
\(xy=120\Rightarrow30k^2=120\\ \Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10;y=12\\x=-10;y=-12\end{matrix}\right.\)
2.
a. 3x(12x - 4) - 9x(4x - 3) = 30
<=> 36x2 - 12x - 36x2 + 27x = 30
<=> 36x2 - 36x2 - 12x + 27x = 30
<=> 15x = 30
<=> x = 2
b. x(5 - 2x) + 2x(x - 1) = 15
<=> 5x - 2x2 + 2x2 - 2x = 15
<=> -2x2 + 2x2 + 5x - 2x = 15
<=> 3x = 15
<=> x = 5
a) x2 ( 5x3 - x - 1212)= 5x5-x3-1212x
b) ( 3xy - x2 + y ) 2323x2y= 6969x3y2- 2323x4y+ 2323x2y2
c) x2 ( 4x3 - 5xy + 2x ) ( -1212 xy )=(4x5-5x3y+2x3).(-1212xy)
= -4848x6y +6060x4y2-2424x4y
2/ Tìm x, biết
a) 3x( 12x - 4 ) - 9x (4x - 3 ) = 30
=> 36x2-12x-36x2+27x=30
=> -12x +27x=30
=> 15x = 30
=>x =2
b ) x( 5 - 2x ) + 2x ( x - 1 )= 15
=> 5x-2x2+2x2-2x=15
=> 3x=15
=>x=5
\(a,\Leftrightarrow25x^2-70x+49-25x^2=32\\ \Leftrightarrow-70x=-17\Leftrightarrow x=\dfrac{17}{70}\\ b,\Leftrightarrow x^2-6x+9+x^2+2x+1-5=0\\ \Leftrightarrow2x^2-4x+5=0\\ \Leftrightarrow2\left(x^2-2x+1\right)+3=0\\ \Leftrightarrow2\left(x-1\right)^2=-3\Leftrightarrow\left(x-1\right)^2=-\dfrac{3}{2}\left(\text{vô lí}\right)\\ \Leftrightarrow x\in\varnothing\)
a) xy=-31
Suy ra -31=1.-31=-1.31=-31.1=31.-1
Ta có bảng sau: