K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Chọn D

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tam thức \(f(x) = {x^2} - 1\) có \(\Delta  = 4 > 0\)nên f(x) có 2 nghiệm phân biệt \({x_1} =  - 1;{x_2} = 1\)

Mặt khác a=1>0, do đó ta có bảng xét dấu:

 

Tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\)

b) Tam thức \(g(x) = {x^2} - 2x - 1\) có \(\Delta  = 8 > 0\) nên g(x) có 2 nghiệm phân biệt \({x_1} = 1 - \sqrt 2 ;{x_2} = 1 + \sqrt 2 \)

Mặt khác a = 1 > 0, do đó ta có bảng xét dấu:

 

Tập nghiệm của bất phương trình là \(\left( {1 - \sqrt 2 ;1 + \sqrt 2 } \right)\)

c) Tam thức \(h(x) =  - 3{x^2} + 12x + 1\) có\(\Delta ' = 39 > 0\)nên h(x) có 2 nghiệm phân biệt \({x_1} = \frac{{6 - \sqrt {39} }}{3};{x_2} = \frac{{6 + \sqrt {39} }}{3}\)

Mặt khác a = -3 < 0, do đó ta có bảng xét dấu:

 

Tập nghiệm của bất phương trình là \(\left( { - \infty ; \frac{{6 - \sqrt {39} }}{3}} \right] \cup \left[ {\frac{{6 + \sqrt {39} }}{3}; + \infty } \right)\)

d) Tam thức \(k(x) = 5{x^2} + x + 1\) có \(\Delta  =  - 19 < 0\), hệ số a=5>0 nên k(x) luôn dương ( cùng dấu với a) với mọi x, tức là \(5{x^2} + x + 1 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

6 tháng 4 2019

Chị ơi phần a giải 2 theo 2TH. TH1 là 3 đều  lớn hơn 0 và TH2 là 2  âm 1 dương

Phần b giải 3 TH: TH1 cả 3 nhỏ hơn 0

                              TH2 :2 dương 1 âm

                              TH3 : 1 âm 2 dương

11 tháng 3 2018

a) Bất phương trình đã cho tương đương với hệ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )

b) Tương tự câu a), tập nghiệm là (1/10; 5)

c) Đặt t = log 2 x , ta có bất phương trình 2 t 3  + 5 t 2  + t – 2 ≥ 0 hay (t + 2)(2 t 2  + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2

Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2

Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )

d) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \( - 2x + 2 < 0\) không là bất phương trình bậc hai một ẩn vì bậc của bất phương trình này là bậc 1.

b) \(\frac{1}{2}{y^2} - \sqrt 2 \left( {y + 1} \right) \le 0\) là bất phương trình bậc hai một ẩn vì bậc của bất phương trình này là bậc 2 và có đúng 1 ẩn là y.

c) \({y^2} + {x^2} - 2x \ge 0\) không là bất phương trình bậc hai một ẩn vì có 2 ẩn là x và y.

26 tháng 2 2021

a,Áp dụng BĐT `|A|-|B|<=|A-B|`

`=>|x+1|-|x-2|<=|x+1-x+2|=3`

Mà đề bài `|x+1|-|x-2|>=3`

`=>|x+1|-|x-2|=3`

`=>x=2\or\x=-1`

`b,1/(|x|-3)-1/2<0`

`<=>(5-|x|)/(2|x|-6)<0`

`<=>(|x|-5)/(|x|-3)>0`

`<=>` $\left[ \begin{array}{l}|x|>5\\|x|<3\end{array} \right.$

`<=>` $\left[ \begin{array}{l}\left[ \begin{array}{l}x>5\\x<-5\end{array} \right.\\-3<x<3\end{array} \right.$

26 tháng 2 2021

`-2<=x<=1` nhé câu a ý mình ghi thiếu.