Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d : x - 1 1 = y - 2 1 = z - 1 2 , A(2;1;4). Gọi điểm H(a;b;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính giá trị T = a 2 + b 2 + c 2 .
A. T = 8
B. T = 62
C. T = 13
D. T = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
Đường thẳng d: x - x 0 a = y - y 0 b = z - z 0 c có 1 VTCP là a → = a ; b ; c
Cách giải: Đường thẳng d có 1 VTCP là a → = 3 ; - 2 ; 1
Đáp án C
Gọi B 2 + t ; - 1 - t ; 1 + t A B ¯ = 1 + t ; - t ; t - 2 . Cho A B ¯ . u d ¯ = 0 ⇔ t + 1 - 4 t - 2 t + 4 = 0 ⇔ t = 1 ⇒ A B ¯ = 2 ; - 1 ; - 1
Khi đó d : x - 1 2 = y + 1 - 1 = z - 3 - 1 .
Chọn A
Mặt phẳng qua I vuông góc với d có phương trình
Gọi H là hình chiếu của I trên đường thẳng d.
Thay x, y, z từ phương trình của d vào (1) ta có
Chọn A.
Gọi ∆ là đường thẳng cần tìm
Đường thẳng d có vecto chỉ phương a d → = 0 ; 1 ; 1
Ta có A(2;3;3); B(2;2;2)
∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương
Vậy phương trình của ∆ là
Đáp án B.
Để A H m i n ⇔ H là hình chiếu của A trên d.
Gọi α là mặt phẳng đi qua A và vuông góc với d
Suy ra n → α = u → đ = 1 ; 1 ; 2 ⇒ α : 1 . x - 2 + 2 . y - 1 + 2 . z - 4 = 0 ⇔ x + y + 2 z - 11 = 0 .
Mặt khác H = d ∩ α ⇒ H 2 ; 3 ; 3 ⇒ a = 2 b = c = 3 ⇒ T = 62 .