K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

- Gọi số ghế băng của hội trường là x ( ghế , \(x\in N\) * )

- Gọi số người đến hội trường là y ( người , \(y\in N\)* )

-> Số người dự định ngồi trên 1 ghế là : \(\frac{y}{x}\) ( người )

Theo đề bài nếu bớt 2 ghế băng và mỗi ghế băng thêm 1 người thì thêm được 8 chỗ \(\left(x-2\right)\left(\frac{y}{x}+1\right)-8=y\left(I\right)\)

Theo đề bài nếu thêm 3 ghế băng và mỗi ghế băng ngồi rút đi 1 người thì giảm 8 chỗ \(\left(x+3\right)\left(\frac{y}{x}-1\right)+8=y\left(II\right)\)

- Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}\left(x-2\right)\left(\frac{y}{x}+1\right)-8=y\\\left(x+3\right)\left(\frac{y}{x}-1\right)+8=y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y-\frac{2y}{x}+a-2-8-y=0\\y+\frac{3y}{x}-x-3+8-y=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\frac{2y}{x}+x=10\\\frac{3y}{x}-x=-5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\frac{2y}{x}+\frac{x^2}{x}=\frac{10x}{x}\\\frac{3y}{x}-\frac{x^2}{x}=-\frac{5x}{x}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-2y=10x\\x^2-3y=5x\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-2\left(5x\right)=10x\\y=5x\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-20x=0\\y=5x\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x\left(x-20\right)=0\\y=5x\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\left(KTM\right)\\x=20\left(TM\right)\end{matrix}\right.\\y=5.20=100\end{matrix}\right.\)

Vậy số băng ghế trong hội trường là 20 băng ghế .

14 tháng 1 2018

Ra x=5 và y=20 nhé

23 tháng 12 2018

Gọi số ghế băng lúc đầu là x ( ghế băng), ( x∈N*, x> 2)

Số học sinh ngồi trên mỗi ghế là Giải bài 17 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( học sinh ) .

Khi bớt đi 2 ghế băng thì còn lại x- 2 ( ghế băng ) và khi đó, mỗi ghế có Giải bài 17 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 học sinh ngồi.

Theo giả thiết, nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh nên ta có phương trình:

Giải bài 17 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 40 x − x ( x − 2 ) = 40 ( x − 2 ) ⇔ 40 x − x 2 + 2 x = 40 x − 80 ⇔ − x 2 + 2 x + 80 = 0

Có a = -1, b= 2; c = 80 và  ∆   =   2 2   –   4 . ( - 1 ) .   80   =   324

Nên phương trình trên có 2 nghiệm là: x1 = -8 ( loại) và x2 =10 ( thỏa mãn)

Vậy lúc đầu có 10 ghế băng.

30 tháng 1 2019

Gọi số ghế băng lúc đầu là x ( ghế băng), ( x∈N*, x> 2)

Số học sinh ngồi trên mỗi ghế là Giải bài 17 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( học sinh ) .

Khi bớt đi 2 ghế băng thì còn lại x- 2 ( ghế băng ) và khi đó, mỗi ghế có Giải bài 17 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9 học sinh ngồi.

Theo giả thiết, nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh nên ta có phương trình:

Giải bài 17 trang 133 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 40 x − x ( x − 2 ) = 40 ( x − 2 ) ⇔ 40 x − x 2 + 2 x = 40 x − 80 ⇔ − x 2 + 2 x + 80 = 0

Có a = -1, b= 2; c = 80 và  ∆   =   2 2   –   4 . ( - 1 ) .   80   =   324

Nên phương trình trên có 2 nghiệm là: x1 = -8 ( loại) và x2 =10 ( thỏa mãn)

Vậy lúc đầu có 10 ghế băng.

7 tháng 6 2017

Phan Minh Anh

Gọi x là số ghế băng ban đầu (x thuôc N*)
Suy ra số học sinh ở mỗi ghế băng là 40:x
Nếu bớt đi 2 ghế băng (x-2) thì mỗi ghế còn lại phải xếp thêm 1 hs (x+1) 

Hay (x-2).(x+1) =40 

<=> x2 -2x -80 =0 
<=> x=10 
Vậy số ghế băng ban đầu là 10 ghế 

Tham khảo:

undefined

NV
26 tháng 3 2021

Gọi số dãy ghế là x>2 và số người một dãy ghế là y>1

\(\Rightarrow\) Số người dự định: \(xy\)

Khi bớt 2 dãy ghế và mỗi ghế thêm 1 người thì số người ngồi: \(\left(x-2\right)\left(y+1\right)\)

Khi thêm 3 dãy ghế và mỗi dãy ghế bớt 1 người thì số người: \(\left(x+3\right)\left(y-1\right)\)

Theo bài ra ta có hệ: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy+8\\\left(x+3\right)\left(y-1\right)=xy-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=10\\-x+3y=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=5\end{matrix}\right.\)

Vậy có 20 dãy ghế

11 tháng 2 2022

Gọi số dãy ghế ban đầu của hội trường là a (dãy), số chỗ ở mỗi dãy ban đầu ở hội trường là b (chỗ)

Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ: \(\left(a-2\right)\left(b+1\right)=ab+8\Leftrightarrow ab+a-2b-2=ab+8\Leftrightarrow a-2b-10=0\left(1\right)\)

Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt đi 1 chỗ thì giảm 8 chỗ:

\(\left(a+3\right)\left(b-1\right)=ab-8\Leftrightarrow ab-a+3b-3=ab-8\Leftrightarrow-a+3b+5=0\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=10\\-a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=20\\b=5\end{matrix}\right.\)

Vậy số dãy ghế ban đầu của hội trường là 20 dãy