Cho hình chóp S. ABCD có SA vuông góc ABCD, ABCD là hình chữ nhật. SA = AD = 2a. Góc giữa (SBC) và mặt đáy (ABCD) là 60 0 . Gọi G là trọng tâm tam giác SBC. Thể tích khối chóp S. AGD là
A. 32 a 3 3 27
B. 8 a 3 3 27
C. 4 a 3 3 9
D. 16 a 3 9 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi M là trung điểm của BC ta có: S G S M = 2 3
Do B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ S B A ⇒ S B A ^ = S B C ; A B C ^ = 60 ∘
Ta có: A B tan 60 ∘ = S A ⇒ A B = 2 a 3 .
S A M B = 1 2 A B . A D = 2 a 2 3 ⇒ V S . A M D = 1 3 S A . S A M B = 4 a 3 3 9 V S . A M D = 2 3 V S . A M D = 8 3 a 3 27
Đáp án A
Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là R A B C D = A C 2 = a
Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là
Chọn C
nên góc giữa mặt phẳng (SBC) và (ABCD) là . Do đó SA = AB tan450 = a
Mặt khác:
Vậy:
Đáp án C.
* Hướng dẫn giải:
Ta có
Ta có A H = 1 3 A C = a
Ta có A B = A C 2 - B C 2 = a 5
⇒
S
A
B
C
D
=
A
B
.
A
D
=
2
a
5
2
⇒ V S . A B C D = 1 3 S H . S A B C D = 2 a 5 3 3