l i m x → - 1 x 3 + 1 x 2 + x bằng:
A. -3
B. -1
C. 0
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-y-2\right|+\left|y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|x-y-2\right|\ge0\forall x;y\\\left|y+3\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-y-2\right|+\left|y+3\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-y-2\right|=0\Rightarrow x-\left(-3\right)-2=0\Rightarrow x+1=0\Rightarrow x=-1\\\left|y+3\right|=0\Rightarrow y+3=0\Rightarrow y=-3\end{matrix}\right.\)
\(\left|x-2007\right|+\left|y-2008\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2007\right|\ge0\forall x\\\left|y-2008\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-2007\right|+\left|y-2008\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2007\right|=0\Rightarrow x-2007=0\Rightarrow x=2007\\\left|y-2008\right|=0\Rightarrow y-2008=0\Rightarrow y=2008\end{matrix}\right.\)
\(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|=0\)
\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|\ge0\forall x\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}y\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|+\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|=0\Rightarrow\dfrac{1}{6}+\dfrac{3}{4}x=0\Rightarrow\dfrac{3}{4}x=-\dfrac{1}{6}\Rightarrow x=-\dfrac{2}{9}\\\left|1,5-\dfrac{11}{17}+\dfrac{23}{13}x\right|=0\Rightarrow\dfrac{29}{34}+\dfrac{23}{13}x=0\Rightarrow\dfrac{23}{13}x=-\dfrac{29}{34}\Rightarrow x=-\dfrac{377}{782}\end{matrix}\right.\)
\(\left|x-y-5\right|+\left|y-2\right|\le0\)
\(\left\{{}\begin{matrix}\left|x-y-5\right|\ge0\forall x;y\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|\ge0\)
Lúc này ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|+\left|y-2\right|\le0\\\left|x-y-5\right|+\left|y-2\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-y-5\right|+\left|y-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\Rightarrow x-2-5=0\Rightarrow x=7\\\left|y-2=0\right|\Rightarrow y=2\end{matrix}\right.\)
\(\left|3x+2y\right|+\left|4y-1\right|\le0\)
\(\left\{{}\begin{matrix}\left|3x+2y\right|\ge0\forall x;y\\ \left|4y-1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|\ge0\)
Lúc này ta có:
\(\left\{{}\begin{matrix}\left|3x+2y\right|+\left|4y-1\right|\ge0\\\left|3x+2y\right|+\left|4y-1\right|\le0\end{matrix}\right.\)
\(\Rightarrow\left|3x+2y\right|+\left|4y-1\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x+2y\right|=0\Rightarrow3x+\dfrac{1}{2}=0\Rightarrow3x=-\dfrac{1}{2}\Rightarrow x=-\dfrac{1}{6}\\\left|4y-1\right|=0\Rightarrow4y=1\Rightarrow y=\dfrac{1}{4}\end{matrix}\right.\)
a) \(\left|x\right|< 1\Rightarrow-1< x< 1\Rightarrow x=0\)
b) \(\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
c) \(\left|x+2\right|=\left|12-10\right|\)
\(\Leftrightarrow\left|x+2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=-2\\x+2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-2\right)-2\\x=2-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
d) \(\left|x+3\right|=2x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\\left[{}\begin{matrix}x+3=2x-2\\x+3=\left(-2x\right)+2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge2\\\left[{}\begin{matrix}x-2x=-2-3\\x-\left(-2x\right)=2-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}-x=-5\\3x=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{-1}{3}\end{matrix}\right.\end{matrix}\right.\)
Vì \(\dfrac{-1}{3}< 1\) nên \(x=5\) thỏa mãn đề bài.
e) \(\left|x+1\right|>4\)
\(\Rightarrow\left[{}\begin{matrix}x+1>4\\x+1< 4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 3\end{matrix}\right.\)
f) \(\left|x-3\right|=\left|2x-1\right|\)
(cho thời gian suy nghĩ, mình chưa làm dạng này bao giờ)
g) \(\left|2x-1\right|-1+2x=0\)
\(\Rightarrow\left|2x-1\right|=-2x+1\)
Mà \(\left|2x-1\right|=\left|-2x+1\right|\)
\(\Rightarrow\left|-2x+1\right|=-2x+1\)
\(\Rightarrow-2x+1\ge0\)
\(\Rightarrow-2x\ge-1\)
\(\Rightarrow x\ge\dfrac{-1}{-2}=\dfrac{1}{2}\)
h) \(\left|3-2x\right|=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3\ge0\\\left[{}\begin{matrix}3-2x=2x-3\\3-2x=-2x+3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge3\\\left[{}\begin{matrix}3+3=2x+2x\\3-3=-2x+2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\left[{}\begin{matrix}6=4x\\0=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\end{matrix}\right.\end{matrix}\right.\)
Vì \(0=0\) luôn đúng nên ta có \(x=\dfrac{3}{2}\)
j) \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\)
(đầu hàng)
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
a, vì |x| ≥ 0 và |x-1| ≥ 0
dấu bằng xảy ra khi và chỉ khi |x|=0 và |x-1|=0
=> x=0 và x=1
b) Giải:
Ta có: \(4x+3⋮x-2\)
\(\Rightarrow4x-8+11⋮x-2\)
\(\Rightarrow4\left(x-2\right)+11⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\in\left\{1;-1;11;-11\right\}\)
\(\left[\begin{matrix}x-2=1\\x-2=-1\\x-2=11\\x-2=-11\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=3\\x=1\\x=13\\x=-9\end{matrix}\right.\)
Vậy \(x\in\left\{3;1;13;-9\right\}\)
b.Ta có:(4x+3)=4x-4.2+8+3
=4(x-2)+11
Để(4x+3)chia hết cho (x-2)
#11chia hết cho (x-2)(#là khi và chỉ khi nhế!)
#x-2€ Ư(11)={±1;±11}
#x€{3;1;13;-9}
Vậy x€{3;1;13;-9}
Chọn A
lim x → − 1 x 3 + 1 x 2 + x = lim x → − 1 x + 1 x 2 − x + 1 x x + 1 = lim x → − 1 x 2 − x + 1 x = − 3