K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

2 tháng 1 2017

Bằng 0 bạn nhé .

k mình nha !

Chúc bạn học tốt !

Bạn biết cách làm không?

8 tháng 1 2017

với a+b+c khác 0 

=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2

=> A=1/2

với a+b+c =0

=>a+b= -c

b+c= -a

a+c= -b

thay vào A ta được :

=>A= a/-a = b/-b = c/-c=-1

=>A= -1

vậy A= -1 hoặc 1/2

8 tháng 1 2017

1)a,b,c có khác 0 không bạn

nếu khác 0 thì tớ mới làm được

11 tháng 2 2016

Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)

          \(\frac{1}{3^2}<\frac{1}{2.3}\)

          \(\frac{1}{4^2}<\frac{1}{3.4}\)

           ...

          \(\frac{1}{2014^2}<\frac{1}{2013.2014}\)

Cộng vế theo vế ta được

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

                                                         \(=1-\frac{1}{2014}<1\)

Ta có : \(A\)\(\ge0\) và \(A<1\left(cmt\right)\)

=> [A]=0 

 

20 tháng 12 2015

+A>0

+ Ta có \(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\) với n >1

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{1}{2}-\frac{1}{2014}=\frac{503}{1007}<1\)

=>   0<A<1 => [A] =0

3 tháng 3 2016

+)hiển nhiên A>0 (1)

+)ta có công thức:\(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)

khi đó \(A<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\Leftrightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2013}-\frac{1}{2014}=1-\frac{1}{2014}=\frac{503}{1007}<1\left(2\right)\)

từ (1);(2)=>0<A<1=>[A]=0

TT_TT mk ra kết quả là 0 mak ko bít đúng hay ko!