K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Đáp án C

Gọi H là trung điểm của CD, dễ thấy SH là đường cao của hình chóp.

 

Suy ra

Để ý rằng SB 2   =   SH 2   +   BH 2   =   SH 2   +   BC 2   +   CH 2 = 3 a 2 / 4   +   a 2   +   a 2 / 4   =   2 a 2 .

Suy ra BS = BD = a 2 , gọi K là trung điểm của SD ta có:

18 tháng 5 2019

Đáp án B

Gọi H là trung điểm của AD, vì ΔASD cân ở S nên SH AD.

Vì (SAD)(ABCD) nên SH (ABCD). K HI SD.

Vì DC AD, DC SH nên DC (SAD). Do đó DC HI.

Kết hợp với HI SD, suy ra HI (SDC).

Vì AB // (SDC) nên d(B; (SDC)) = d(A; (SDC)) = 2HI

Ta có

 

Ta lại có

24 tháng 1 2019

Đáp án B.

Gọi H là trung điểm của AB

4 tháng 6 2019

5 tháng 4 2018

9 tháng 11 2017

Đáp án A

Gọi I, E lần lượt là trung điểm của ABCD

Vì  S M S A = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C A = 1 2 d I ; S C A

= 1 2 I H , trong đó H là hình chiếu của I lên SE

Ta có  1 I H 2 = 1 I S 2 + 1 I E 2 = 1 a 2 − a 2 2 + 1 a 2 = 7 3 a 2

⇒ I H = a 21 7 ⇒ d M ; S C D = 1 2 . a 21 7 = a 21 14

28 tháng 3 2016
Lời giải
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.

2) Ta có tam giác SAB đều nên SA =a32
suy ra V=13SABCD.SH=a336

30 tháng 3 2016

Khối đa diện

7 tháng 12 2017

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6

NV
23 tháng 4 2022

Do SAB là tam giác đều \(\Rightarrow SH\perp AB\)

Mà \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\AB=\left(SAB\right)\cap\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)

Gọi E là trung điểm CD, từ H kẻ \(HF\perp SE\) (F thuộc SE)

\(\left\{{}\begin{matrix}HE\perp CD\\SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SHE\right)\)

\(\Rightarrow CD\perp HF\)

\(\Rightarrow HF\perp\left(SCD\right)\Rightarrow HF=d\left(H;\left(SCD\right)\right)\)

\(HE=BC=a\) ; \(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

Hệ thức lượng: 

\(HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{21}}{7}\)

NV
23 tháng 4 2022

undefined