Cho số phức z thỏa mãn (2 + 3i)z = 1 Khi đó, z + 2 z bằng
A. -1+i
B. -1-i
C. 1+i
D. 1-i
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt z = a + bi(a, b ∈ R). Ta có
⇔ 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)
⇔ 3a - b - 2 + (a - 7b + 6)i = 0
Suy ra z = 1 + i và w = 1 + ( 1 + i ) + ( 1 + i ) 2 = 2 + 3 i .
Vậy: | w | = ( 4 + 9 ) = 13
Chọn B
Ta có: | 1 + 3 i | = ( 1 + 3 ) = 2 . Đặt z = a + bi(a, b ∈R). Ta có:
| z + i | = | 1 + 3 i | <=> |a + (1 - b)i| = 2 <=> a 2 + ( 1 - b ) 2 = 4
Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(0 ;1), bán kính R = 2
Chọn C
Đặt z = a + bi(a, b ∈ R).
Suy ra z = 1 + i. Vậy z . z = | z | 2 = 1 2 + 1 2 = 2
Chọn B
Đặt z = a + bi(a, b ∈ R). Ta có :
(1 + i)(z - i) = (1 + i)[a + (b - 1)i] = a - b + 1 + (a + b - 1)i
Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i
⇔ a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i ⇔ (3a - b + 1) + (a + 3b - 1)i = 2i
Suy ra z = 1 và
Chọn C
Từ (1) và (2) suy ra a = b = 1.
Suy ra z=1+i
Vậy z 2 = ( 1 + i ) 2 = 1 + 2 i - 1 = 2 i
Chọn D
Chọn A
Ta có: (2 + 3i)z = 1 - 5i. Do đó