x+1/2y=0.75
x-1.5y=-2.25 Giải hệ pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 1/(x+2y)=a; y=b
=>a+b=-2 và 2a-3b=1
=>a=-1; b=-1
=>y=-1; x+2y=-1
=>y=-1; x=-1-2y=-1-2*(-1)=-1+2=1
1) Thay \(m=\sqrt{3}+1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}\left(\sqrt{3}+1-1\right)x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\sqrt{3}y=\sqrt{3}\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-y\left(\sqrt{3}+1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-\sqrt{3}y-y=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(-3\sqrt{3}-1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}\\3x-2\sqrt{3}\cdot\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\3x=\sqrt{3}-\dfrac{12+10\sqrt{3}}{13}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\x=\left(\dfrac{13\sqrt{3}-12-10\sqrt{3}}{13}\right)\cdot\dfrac{1}{3}=\dfrac{3\sqrt{3}-12}{13}\cdot\dfrac{1}{3}=\dfrac{\sqrt{3}-4}{13}\end{matrix}\right.\)
Vậy: Khi \(m=\sqrt{3}+1\) thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}-4}{13}\\y=\dfrac{-5+2\sqrt{3}}{13}\end{matrix}\right.\)
a) Thay m=3 vào hpt \(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\3x+2-2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy m=3 thì hpt có nghiệm duy nhất (x,y)=(1;0)
b)Ta có \(\hept{\begin{cases}x=1-y\\m-my+2y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\\left(2-m\right)y=0\left(2\right)\end{cases}}\)
Để hpt có nghiệm duy nhất \(\Leftrightarrow pt\left(2\right)\ne0\Leftrightarrow2-m\ne0\Leftrightarrow m\ne2\)
Khi đó \(\left(2\right)\Leftrightarrow y=0\).Thay vào \(\left(1\right)\Leftrightarrow x=1\)
Để hpt có vô số nghiệm \(\Leftrightarrow2-m=0\Leftrightarrow m=2\)
Vậy m\(\ne\)2 thì hpt có nghiệm duy nhất (x;y)=(1;0)
m=2 thì hpt có vô số nghiệm
\(\begin{aligned} &\text { Điêu kiện }\left\{\begin{array}{l} 2 x+y \geq 0 \\ x-2 y+1 \geq 0 \end{array}\right.\\ &\text { Ta có hệ phương trình dã cho } \Leftrightarrow\left\{\begin{array}{l} 3 \sqrt{2 x+y}+\sqrt{x-2 y+1}=5 \\ 2 \sqrt{x-2 y+1}-(5 x+10 y)=9 \end{array}\right.\\ &\text { Đặt } u=\sqrt{2 x+y},(\mathrm{u} \geq 0) \text { và } v=\sqrt{x-2 y+1},(v \geq 0)\\ &\text { Suy ra }\left\{\begin{array}{l} 2 x+y=u^{2} \\ x-2 y+1=v^{2} \end{array} \Rightarrow\left\{\begin{array}{l} 2 x+y=u^{2} \\ x-2 y=v^{2}-1 \end{array}\right.\right.\\ &\text { Ta có } 5 x+10 y=m(2 x+y)+n(x-2 y), \text { suy ra }\left\{\begin{array}{l} 2 m+n=5 \\ m-2 n=10 \end{array} \Rightarrow\left\{\begin{array}{l} m=4 \\ n=-3 \end{array}\right.\right.\\ &\text { Vậy } 5 x+10 y=4(2 x+y)-3(x-2 y)=4 u^{2}-3\left(v^{2}-1\right) \end{aligned}\)
\(\text{Vậy ta có hệ phương trình}: \begin{array}{*{20}{l}} {\left\{ {\begin{array}{*{20}{l}} {3u + v = 5}\\ {2v - \left( {4{u^2} - 3{v^2} + 3} \right) = 9} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {v = 5 - 3u}\\ {4{u^2} - 3{v^2} - 2v + 12 = 0} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {v = 5 - 3u}\\ {23{u^2} - 96u + 73 = 0} \end{array}} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} u = 1\\ v = 2 \end{array} \right.\\ \left\{ \begin{array}{l} u = \dfrac{{73}}{{23}}\\ v = - \dfrac{{104}}{{23}} \end{array} \right. \end{array} \right.} \end{array}\)
\(\text{Trường hợp 1}: \left\{\begin{array}{l}u=1 \\ v=2\end{array} \Rightarrow\left\{\begin{array}{l}2 x+y=1 \\ x-2 y=3\end{array} \Leftrightarrow\left\{\begin{array}{l}x=1 \\ y=-1\end{array}\right. (tm) \right.\right.\\ \text{Trường hợp 2}: \left\{\begin{array}{l}u=\dfrac{73}{23} \\ v=-\dfrac{104}{23}\end{array}\right. (ktm \left.v \geq 0\right)\\ \text{Vậy hệ phương trình đã cho có nghiệm} \left\{\begin{array}{l}x=1 \\ y=-1\end{array}\right..\)
trừ 2 vế, rồi tìm y=>x