K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Đồ thị hàm số đi qua A(1; 2) và B(-2; -1)

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì

Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:

\(a\cdot4^2=4\)

\(\Leftrightarrow a\cdot16=4\)

hay \(a=\dfrac{1}{4}\)

8 tháng 2 2021

a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)

\(\Rightarrow a=\dfrac{1}{4}\)

b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)

- Ta có đồ thì của hai hàm số :

c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)

 

22 tháng 11 2021

\(a,\Leftrightarrow2m-2+m+3=4\Leftrightarrow m=1\\ b,\text{Gọi điểm cố định mà (1) luôn đi qua là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=\left(m-1\right)x_0+m+3\\ \Leftrightarrow mx_0-x_0+m+3-y_0=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(3-x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=4\end{matrix}\right.\Leftrightarrow A\left(-1;4\right)\)

Vậy (1) luôn đi qua A(-1;4)

Câu 2: 

a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:

m+1=2

hay m=1

Vậy: m=1

22 tháng 4 2021

a) Vì đồ thị hàm số (1) đi qua A(1;2025) nên ta có:

\(\left(m-3\right)1+2021=2025\\ \Leftrightarrow m-3=4\\ \Leftrightarrow m=7\)

 

27 tháng 10 2021

a: Thay x=1 và y=0 vào (d), ta được:

1-2m+3=0

\(\Leftrightarrow m=2\)

1 tháng 2 2018

a) Với a = 2 hàm số có dạng y = 2x + b.

Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:

    0 = 2.1,5 + b => b = -3

Vậy hàm số là y = 2x – 3

b) Với a = 3 hàm số có dạng y = 3x + b.

Đồ thị hàm số đi qua điểm (2; 2), nên ta có:

    2 = 3.2 + b => b = 2 – 6 = - 4

Vậy hàm số là y = 3x – 4

c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b

Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:

√3 + 5 = √3 . 1 + b => b = 5

Vậy hàm số là y = √3 x + 5