K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

30 tháng 7 2019

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

20 tháng 11 2023

ĐKXĐ: \(x\ge0;x\ne25\)

\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\dfrac{7}{\sqrt{x}-5}\)

Để \(A\in\mathbb{Z}\) thì: \(\dfrac{7}{\sqrt{x}-5}\) nhận giá trị nguyên

\(\Rightarrow 7\vdots\sqrt{x}-5\)

\(\Rightarrow\sqrt{x}-5\inƯ\left(7\right)\)

\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{6;12;4;-2\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{4;6;12\right\}\)

\(\Rightarrow x\in\left\{16;36;144\right\}\left(tm\right)\)

Vậy \(A\in \mathbb{Z}\) khi \(x\in\left\{16;36;144\right\}\)

24 tháng 7 2016

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

a) \(A=\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

24 tháng 7 2016

b) Thay \(x=\frac{1}{9}\)vào A, ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=\frac{\frac{1}{3}+1}{\frac{1}{3}-3}=\frac{\frac{4}{3}}{\frac{-8}{3}}=-\frac{1}{2}\)

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

16 tháng 11 2017

a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)

\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)

b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)

16 tháng 11 2017

câu c nữa bạn

13 tháng 11 2017

Ta có :

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

để A nguyên thì \(\frac{4}{\sqrt{x}-3}\)nguyên

\(\Rightarrow\)\(⋮\)\(\sqrt{x}-3\)

\(\Rightarrow\)\(\sqrt{x}-3\)\(\in\)Ư ( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }

Lập bảng ta có :

\(\sqrt{x}-3\)1-12-24-7
\(\sqrt{x}\)42517-4
x16425149\(\varnothing\)

Vậy ...

27 tháng 7 2018

KHÔNG BIẾT