K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

lớp 9 làm gì có dạng này hả bạn

18 tháng 1 2016

đề thi bọn mik học sinh giỏi huyện vòng 3 đó

11 tháng 4 2015

abc:(a+b+c)=100

aba=(a+b+c)x100

abc=a x100+bx100+cx100

ax100+bx10+c=ax100+bx100+cx100

( đề có vẻ sai )

 

23 tháng 3 2022

abc:(a+b+c)=100

aba=(a+b+c)x100

abc=a x100+bx100+cx100

ax100+bx10+c=ax100+bx100+cx100

( đề có vẻ sai ) Nếu bn cảm thấy đúng thì k cho mình nhé!Học Tốt

17 tháng 9 2021

\(a^2+b^2+c^2+d^2=1\) và \(ab+bc+cd+da=1\)

\(\Rightarrow a^2+b^2+c^2+d^2=ab+bc+cd+da\)

\(\Rightarrow a^2+b^2+c^2+d^2-ab-bc-cd-da=0\)

\(\Rightarrow2\left(a^2+b^2+c^2+d^2-ab-bc-cd-da\right)=0.2\)

\(\Rightarrow2a^2+2b^2+2c^2+2d^2-2ab-2bc-2cd-2da=0\)

\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2+d^2+d^2-2ab-2bc-2cd-2da=0\)

\(\Rightarrow\left(a^2-2ab-b^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2cd+d^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2=0\)

Ta có:

 \(\left(a-b\right)^2\ge0\)

\(\left(a-d\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

\(\left(c-d\right)^2\ge0\)

Mà tổng của chúng đều là 0

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow a-d=0\Rightarrow a=d\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow c-d=0\Rightarrow c=d\)

\(\Rightarrow a=b=c=d\)

Thay: \(a^2+b^2+c^2+d^2=1\) ta được

\(\Rightarrow a^2+a^2+a^2+a^2=1\)

\(\Rightarrow4a^2=1\)

\(\Rightarrow a^2=\frac{1}{4}\)

\(\Rightarrow a\in\left\{\pm\frac{1}{2}\right\}\)

30 tháng 6 2019

Lời giải :

\(\frac{a^2+b^2}{ab}=\frac{\left(a+b\right)^2-2ab}{ab}\)

\(=\frac{1-2ab}{ab}=\frac{1}{ab}-\frac{2ab}{ab}=\frac{1}{ab}-2\)

Ta có : \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow\frac{1}{ab}-2\ge\frac{1}{\frac{1}{4}}-2=2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

30 tháng 6 2019

TL:

\(\frac{a^2+b^2}{ab}=\frac{a^2+2ab+b^2-2ab}{ab}\) 

\(=\frac{\left(a+b\right)^2-2ab}{ab}=\frac{1-2ab}{ab}=\frac{1}{ab}-\frac{2ab}{ab}=\frac{1}{ab}-2\)

mà \(ab\le(\frac{a+b}{2})^2=\frac{1}{4}\) 

\(\frac{1}{ab}-2\ge\frac{\frac{1}{1}}{4}-2=\frac{-7}{4}\)  

\(\Rightarrow ab\ge4\) Dấu "=" xảy ra <=>ab=4(bạn tự tìm a,b nha)

Vậy GTNN của BT=\(\frac{-7}{4}\)

3 tháng 2 2019

theo giả thiết => a+b+c=3abc

ta có:

\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)

=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2

dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)

4 tháng 2 2019

sorry mk nhầm xảy ra dấu = <=>a=b=c=1