Cho hàm số y= f(x) liên tục trên R. Hàm số y= f’(x) có đồ thị như hình vẽ. Hàm số có bao nhiêu cực trị?
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Suy ra đồ thị của hàm số g’ (x) là phép tịnh tiến đồ thị hàm số y= f’ (x) theo phương Oy xuống dưới đơn vị.
Ta có và dựa vào đồ thị của hàm số y= f’ (x), ta suy ra đồ thị của hàm số g’ (x) cắt trục hoành tại 4 điểm.
Chọn D.
Dựa vào hình vẽ, ta thấy (1) có 3 nghiệm phân biệt; (2) có 2 nghiệm phân biệt; (3) có 3 nghiệm phân biệt và các nghiệm trên đều là nghiệm đơn hoặc bội lẻ
Vậy hàm số đã cho có 3 + 3 + 2 + 3 = 11 điểm cực trị. Chọn B
Chú ý: Một số em có thể sẽ quên mất khi xét số nghiệm của phương trình f(x) = 0 có 3 nghiệm phân biệt mà không loại nghiệm kép dẫn đến chọn nhầm đáp án C là sai.
Dựa vào đồ thị hàm số ta thấy hàm số có 3 điểm cực trị
Xét hàm số có
.
.
Phương trình có 2 nghiệm đơn phân biệt.
Phương trình có 2 nghiệm đơn phân biệt.
Phương trình có 2 nghiệm đơn phân biệt.
Các nghiệm này không trùng nhau, do đó phương trình y’ = 0 có 9 nghiệm phân biệt (không trùng nhau),
Các nghiệm đều là nghiệm đơn. Do vậy hàm số có 9 điểm cực trị
Chọn D
Chọn D.
Phương pháp:
Xác định điểm trên đồ thị hàm số mà tại đó có đạo hàm đổi dấu.
Cách giải:
Quan sát đồ thị hàm số ta thấy, hàm số đạt cực trị tại 2 điểm x = 0, x = 1
Chọn D
Ta có
.
Suy ra đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị hàm số y= f’(x) theo phương song song với trục Oy xuống dưới đơn vị.
Ta có và dựa vào đồ thị của hàm số y= f’(x) , ta suy ra
đồ thị của hàm số y= g’(x) cắt trục hoành tại 4 điểm.
=> Hàm số y= g( x) có 4 cực trị .