Cho a.b.c = 0. Rút gọn biểu thức sau
a/a.b+a+1 + b/b.c+b+1 + c/c.a+c+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c).(a+b+c)-2(a.b+b.c+c.a)=a^2+ab+ca+ab+b^2+bc+ca+bc+c^2-2ab-2bc-2ca=(a^2+b^2+c^2)+(ab+ab-2ab)+(ca+ca-2ca)+(bc+bc-2bc)=a^2+b^2+c^2 .
Mik viết thế này mong bạn thông cảm .
Ta có: \(\left(a+b+c\right).\left(a+b+c\right)-2\left(ab+bc+ca\right)\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\left(ab+bc+ca\right)\)
\(=a^2+b^2+c^2\)
Ta có :
\(\left(a+b+c\right)\left(a+b+c\right)-2\left(ab+bc+ca\right)\)
\(=a^2+ab+ac+ba+b^2+bc+ca+cb+c^2-2ab-2bc-2ca\)
\(=\left(a^2+b^2+c^2\right)+\left(ab+ac+ba+bc+ca+cb-2ab-2bc-2ca\right)\)
\(=a^2+b^2+c^2\)
\(\left(a+b+c\right).\left(a+b+c\right)-2.\left(a.b+b.c+c.a\right)\)
\(=a^2+b^2+c^2-\left(2ab+2bc+2ca\right)\)
\(=a^2+b^2+c^2-2ab-2bc-2ca\)
\(=a^2-2ab+b^2-2bc+c^2-2ca\)
\(=\left(a-2b\right)a+\left(b-2c\right)b+\left(c-2a\right)c\)
Chúc bn học tốt
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)
\(=\frac{abc}{abc+a\times abc+ab}+\frac{abc}{abc+b+bc}+\frac{1}{1+c+ac}\)
\(=\frac{abc}{ab\left(c+ac+1\right)}+\frac{abc}{b\left(ac+1+c\right)}+\frac{1}{1+c+ac}\)
\(=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)
\(=\frac{c+ac+1}{c+ac+1}\)
= 1
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)\(=\frac{1}{ab+a+1}+\frac{a}{a\left(bc+b+1\right)}+\frac{abc}{ca+c+abc}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)
Theo bài ra ta có: a.b.c = 1
=> a=1;b=1;c=1
Ta có: A = \(\frac{1}{a.b+a+1}\)\(+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)\(=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}\)\(+\frac{1}{1.1+1+1}\)
\(=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}\)\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)
Vậy A = 1