Cho △ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng AM ⊥ (vuông góc) với BC
Giúp tui với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAMB và ΔAMC, ta có:
AB = AC (gt)
BM = CM (vì M là trung điểm BC)
AM cạnh chung
Suy ra: ΔAMB= ΔAMC(c.c.c)
⇒ ∠(AMB) =∠(AMC) ̂(hai góc tương ứng)
Ta có: ∠(AMB) +∠(AMC) =180o (hai góc kề bù)
∠(AMB) =∠(AMC) =90o. Vậy AM ⏊ BC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
a) Xét `ΔABM` và `ΔACN` có:
`\hat{AMB}=\hat{ANC}=90^o`
`AB=AC(g t)`
`\hat{A}:chung`
`⇒ ΔABM=ΔΔACN(CH-GN)`
`=> AM=AN` (2 cạnh tương ứng)
b) Xét `ΔAHN` và `ΔAHM` có:
`AN=AM(cmt)`
`\hat{ANH}=\hat{AMH}=90^o`
`AH:chung`
`=> ΔAHN=ΔAHM(CH-CGV)`
`=> \hat{NAH}=\hat{MAH}` (2 góc tương ứng)
`=> AH` là tia phân giác của `\hat{NAM}` (hay `\hat{BAC}`) (1)
Xét `ΔABK` và `ΔACK` có:
`AB=AC(g t)`
`AK:chung`
`BK=KC` (K là trung điểm của BC)
`=> ΔABK=ΔACK(c.c.c)`
`=> \hat{BAK}=\hat{CAK}` (2 góc tương ứng)
`=> AK` là tia phân giác của `\hat{BAC}` (2)
Từ (1) và (2) `=>` 3 điểm `A,H,K` thẳng hàng
nguồn: copy
a) Xét \(\Delta ABC\)có
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Vì M là trung điểm của BC
=> AM là đường trung tuyến của \(\Delta ABC\)
Trong tam giác cân đường trung tuyến cũng là đường cao
\(\Rightarrow AM\perp BC\)
A B M C 1 2
a) Xét \(\Delta ABC\)có : AB = BC ( gt )
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
\(AB=AC\left(gt\right)\)
\(BM=MC\)( M là trung điểm của BC )
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)( 2 góc tương ứng )
mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( kề bù )
\(\Rightarrow\widehat{M_1}=90^o\)
\(\Rightarrow AM\perp BC\)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
A B C H D M
Tam giác ABC cân tại A, H là trung điểm của BC nên \(AH\perp BC\).
Có \(\overrightarrow{AM}.\overrightarrow{BD}=\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{AD}\right)\left(\overrightarrow{BH}+\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{BH}+\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}+\overrightarrow{AD}.\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}\right)\) (do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{AH}.\left(\overrightarrow{BH}+\overrightarrow{HD}\right)+\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{HD}\right).\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\) ( do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{BH}\right)\)
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{HC}\right)\) ( doM là trung điểm của BC).
\(=\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{AC}\)
\(=0\) (Do \(HD\perp AC\) )
Xét tam giác AMB và tam giác AMC
Có: AB=AC (gt)
AM chung
MC=MB (B là trung điểm)
=>Tam giác AMB=tam giác AMC (c.c.c)
=>Góc AMB=góc AMC (2 góc tương ứng)
=>Góc AMB=góc AMC=90 độ
=>AM vuông góc với BC (đpcm)
Đây bạn nhé, chúc học tốt!!!
Xét △ ABC có AB=AC
⇒ △ ABC cân tại A
Vì M là trung điểm của BC
⇒ AM là đường trung tuyến
mà trong tam giác cân đường trung tuyến đồng thời là đường cao
⇒AM⊥BC