K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

\(P=x^2-xy+xy+y^2-y^2=x^2\)

Vậy chọn C

13 tháng 11 2021

 

Cho biểu thức P = x(x – y) + y(x + y) – y 2 . Khẳng định nào sau đây là đúng?

A. Giá trị biểu thức P không phụ thuộc vào giá trị của x và y.

B. Giá trị biểu thức P phụ thuộc vào giá trị của x và y

C. Giá trị biểu thức P chỉ phụ thuộc vào giá trị của x.

D. Giá trị biểu thức P chỉ phụ thuộc vào giá trị của y.

 

Bài làm:

\(P=x\left(x-y\right)+y\left(x+y\right)-y^2\)

    \(=x^2-xy+xy+y^2-y^2\)

    \(=x^2\)

Vậy biểu thức P chỉ phụ thuộc vào giá trị x.

Chọn C.

 

19 tháng 9 2021

 B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2)

B=-x^2+xy-yx-y^2+x^2-xy+xy-y^2+2y^2

B=0 

vậu B ko phọ thuộc vào gt của biến

 

\(B=-x\left(x-y\right)-y\left(x+y\right)+\left(x+y\right)\left(x-y\right)+2y^2\)

\(=-x^2+xy-xy-y^2+x^2-y^2+2y^2\)

=0

11 tháng 5 2018

28 tháng 6 2018

20 tháng 9 2021

2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)

\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)

3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)

\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)

31 tháng 10 2023

Sửa đề:

E = (2x - y)² + (3x + y)² + 2(2x - y)(3x + y) + 25(1 + x)(1 - x)

= (2x - y + 3x + y)² + 25 - 25x²

= (5x)² + 25 - 25x²

= 25x² + 25 - 25x²

= 25

Vậy giá trị của E không phụ thuộc vào giá trị của x và y

28 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi:

(x + y)(6x – 6y) ≠ 0 ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điều kiện x  ≠  ± y

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào x, y.

2 tháng 11 2023

\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)

\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)

\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)

\(A=2x^2+2023\)

Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y 

\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)

\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)

\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)

\(B=-3x+3y\)

Vậy giá trị của biểu thức vẫn phụ thuộc vào biến 

2 tháng 11 2023

A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)

A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)

A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))

A = 2\(x^2\) - 0 + 2023 - 0

A = 2\(x^2\) + 2023

Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.

Bài 4: 

Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)

\(\Leftrightarrow-62x=-92\)

hay \(x=\dfrac{46}{31}\)