Bài 1: Cho hình thang ABCD ( AB//CD) hai đường chéo AC giao với BD tại I. Một đường thẳng đi qua I và song song với AB và cắt AD tại M, cắt BC tại N.
a, cho AB=a, BC= b. Tinh MN theo a va b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vé hình nhé!
Xét \(\Delta\)ABD có: OM//AB (gt) => \(\frac{OM}{AB}=\frac{DO}{DB}\left(1\right)\)
Xét \(\Delta\)ABC có: ON //AB (gt) => \(\frac{ON}{AB}=\frac{CO}{CA}\left(2\right)\)
Mặt khác: AB//CD (gt) =>\(\frac{DO}{DB}=\frac{CO}{CA}\left(3\right)\)
(1)(2)(3) => \(\frac{OM}{AB}=\frac{ON}{AB}\)=> OM=ON (đpcm)
Nguồn: loigiaihay.com