K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Chọn B.

Lời giải.

Xét hình chóp tứ giác đều S.ABCD, đặt AB =x, SO =h. Với O là tâm của hình vuông ABCD  ⇒ S O   ⊥ ( A B C D ) . Qua O kẻ đường thẳng OH vuông góc với SA với H ∈ SA

Ta có

Suy ra OH là đoạn vuông góc chung của SA và BD

Theo bài ra, ta có 

 

Tam giác SAO vuông tại O, có đường cao OH suy ra 

22 tháng 9 2023

a) Kẻ \(OH \bot SB\left( {H \in SB} \right)\)

\(S.ABC{\rm{D}}\) là chóp tứ giác đều \( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\( \Rightarrow AC \bot \left( {SB{\rm{D}}} \right) \Rightarrow AC \bot OH\)

Mà \(OH \bot SB\)

\( \Rightarrow d\left( {AC,SB} \right) = OH\)

\(B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = a\sqrt 2  \Rightarrow BO = \frac{1}{2}B{\rm{D}} = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông tại \(O \Rightarrow SO = \sqrt {S{B^2} - B{O^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBO\) vuông cân tại \(O\) có đường cao \(OH\)

\( \Rightarrow d\left( {AC,SB} \right) = OH = \frac{1}{2}SB = \frac{a}{2}\)

b) \({S_{ABC{\rm{D}}}} = A{B^2} = {a^2}\)

\({V_{S.ABC{\rm{D}}}} = \frac{1}{3}{S_{ABC{\rm{D}}}}.SO = \frac{{{a^3}\sqrt 2 }}{6}\)

3 tháng 11 2019

17 tháng 12 2018

Đáp án D.

12 tháng 11 2019

16 tháng 10 2017

Đáp án C

Gọi O là giao điểm của AC và BD. Ta có AC vuông góc với mặt phẳng (SBD) tại O. Kẻ OH vuông góc với SB, thì OH là khoảng cách cần tìm. Tam giác SOB vuông cân tại O, nên   O H = S B 2 = a 2 .

21 tháng 11 2018

11 tháng 3 2018

Đáp án D

 

Mặt khác S.OAB là tứ diện vuông đỉnh O nên

22 tháng 1 2017

Đáp án đúng : D

22 tháng 6 2023

toán lớp 12 thì mình nỏ biết