Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h = 3 và góc SAB ^ = α = 60°. Tính diện tích xung quanh của hình nón đỉnh S
A. 3 π 2
B. 3 π 2
C. 6 π 2
D. 8 π 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi r là bán kính đáy của hình nón ta có OA = r, SO = h và SA = SB = SC = SD = l là đường sinh của hình nón.
Gọi I là trung điểm của đoạn AB, ta có:
(2) ⇒ r = 2 lcos α
(1) ⇒ l 2 = h 2 + 2 l 2 cos2 α
⇒ h 2 = l 2 (1 − 2cos2 α )
Do đó
Đáp án A
Do ABCD là hình vuông nên hình tròn nội tiếp ABCD có bán kính là r = a 2
Vậy diện tích xung quanh của hình nón cần tìm là
Đáp án A
Gọi O là tâm của hình vuông ABCD.
Do S.ABCD là hình chóp đều nên SO ⊥ (ACBD)
Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)
Đáp án A
Đặt r = OA, SO = h, SA = SB = SC = l là đường sinh của hình nón.
Gọi I là trung điểm của đoạn AB.