Nếu a và b là số thực, a < b, chứng minh a<(a+b)/2<b. Mọi người ai biết giúp mình với.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
16 tháng 8 2016
x=a/m, y=b/m (a, b, m thuộc Z, m>0) và x<y nên suy ra a<b
x<z <=> x=a/m < a+b/2m
<=> 2a < a+b (vì m nguyên và >0)
<=> a< b điều này đúng (suy ra ở trên)
z<y <=> y=b/m > a+b/2m
<=> 2b > a+b (vì m nguyên và >0)
<=> b > a điều này đúng
28 tháng 7 2017
Ta có : \(x< y\)hay \(\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)
So sánh \(x, y, z\) ta chuyển chúng cùng mẫu : \(2m\)
\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\) và \(y=\dfrac{b}{m}=\dfrac{2b}{2m}\) và \(z=\dfrac{a+b}{2m}\)
mà \(a< b\)
\(\Rightarrow a+a< b+a\)
hay \(2a < a + b\)
\(\Rightarrow x< z\) (1)
mà : \(a< b\)
\(\Rightarrow a+b< b+b\)
hay \(a + b < 2b\)
\(\Rightarrow\text{z < y}\) (2)
Từ (1) và (2) ,kết luận : \(x < z < y\)
Dùng phép biến dổi tương đương
a<\(\frac{a+b}{2}\)\(\Leftrightarrow\)\(a-\frac{a+b}{2}<0\Leftrightarrow\frac{2a-a-b}{2}<0\)
\(\Leftrightarrow\frac{a-b}{2}<0\)là đúng vì a<b nên a-b<0
BĐT được chứng minh
Vế còn lại tương tự