Hàm số y = a x 3 + b x 2 + c x + d đồng biến trên ℝ khi và chỉ khi
A. [ a = b = 0 , c > 0 a > 0 ; b 2 - 3 a c > 0
B. [ a = b = 0 , c > 0 a < 0 ; b 2 - 3 a c ≤ 0
C. [ a = b = 0 , c > 0 a > 0 ; b 2 - 3 a c ≤ 0
D. a > 0 ; b 2 - 3 a c ≤ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: Hàm số luôn đồng biến trên
ℝ ⇔ y ' = 3 a x 2 + 2 b x + c ≥ 0 ∀ x ∈ ℝ ⇔ a > 0 Δ y ' = b 2 − 3 a c ≤ 0
Cho hàm số: y = -3 x 2 . Ta có: a = -3 < 0 nên hàm số đồng biến khi x < 0.
Chọn C) Khi -15 < x < 0, hàm số đồng biến.
Chọn A
Ta có: f ' x = 3 a x 2 + 2 b x + c
có ∆ ' f ' x = b 2 - 3 a c .
Hàm số f x nghịch biến trên ℝ khi và chỉ khi
3 a < 0 ∆ ' f ' x ≤ 0
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
b: Khi x>0 thì y<0
=> Hàm số nghịch biến
Khi x<0 thì y<0
=> Hàm số đồng biến
Đáp án C
Với a = b = 0,c > 0 thì y = c x + d ⇒ y ' = c > 0 , ∀ x ∈ ℝ nên hàm số đồng biến trên ℝ
Với a ≠ 0 , ta có YCBT ⇔ y ' = 3 a x 2 + 2 b x + c ≥ 0 , ∀ x ∈ ℝ
⇔ 3 a > 0 ∆ ' = b 2 - 3 a c ≤ 0 ⇔ a > 0 b 2 - 3 a c ≤ 0