K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Thực hiện quy đồng:  a b = a b + m b b + m = a b + a m b 2 + b m

a + m b + m = b a + m b b + m = a b + b m b 2 + b m

Vì  a b < 1 ⇒ a < b ⇒ a b + a m < a b + b m

Từ đó ta thu được  a b < a + m b + m

7 tháng 9 2019

a) Thực hiện quy đồng  a b = a ( b + m ) b ( b + m ) = a b + a m b 2 + b m ;

a + m b + m = b ( a + m ) b ( b + m ) = a b + b m b 2 + b m .  Vì a b  < 1=> a < b => ab +am < ab + bm

Từ đó thu được a b < a + m b + m

b)  437 564 < 437 + 9 564 + 9 = 446 573 .

22 tháng 6 2020

Bài làm:

a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)

b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)

c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)

Học tốt!!!!

22 tháng 6 2020

1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

14 tháng 3 2021

cảm ơn nha

29 tháng 3 2017

Ta có: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Ta có: a/b > 1 nên a > b suy ra am > bm, suy ra ab + am > ab + bm.

Do đó Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Hay Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

24 tháng 9 2018

17 tháng 4 2022

Ta có \(M=\dfrac{a^2}{a+b}+\dfrac{b^2}{a+b}\ge\dfrac{\left(a+b\right)^2}{2\left(a+b\right)}\)(BĐT Schwarz) 

\(=\dfrac{a+b}{2}=1\)

 "=" <=> a = b = 1 (không thỏa mãn điều kiện) 

=> "=" không xảy ra => M > 1(ĐPCM)

6 tháng 3 2019

Câu 1:                    Giải

\(\frac{a}{b}< 1\Leftrightarrow a< b\)

\(\Leftrightarrow am< bm\)

\(\Leftrightarrow ab+am< ab+bm\)

\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)

\(\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(đpcm\right)\)

Câu 2:                Giải

Ta có : \(\hept{\begin{cases}\frac{437}{564}=1-\frac{127}{564}\\\frac{446}{573}=1-\frac{127}{573}\end{cases}}\)

Vì \(\frac{127}{564}>\frac{127}{573}\) nên \(\frac{437}{564}>\frac{446}{573}\)