Cho hình chữ nhật ABCD có tâm I và cạnh AB = 1, AD = √3. Tính số đo các góc ∠(AID) và ∠(DIC) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Vì SA vuông góc với đáy nên góc φ giữa SC và mặt phẳng (ABCD) bằng góc giữa SC và hình chiếu AC của nó lên đáy. Suy ra φ = S C A ^ (vì S C A ^ là góc nhọn trong tam giác vuông SAC)
Trong hình chữ nhật ABCD, ta có AC=a 3 . Suy ra tam giác SAC vuông cân ở A.
Vậy, số đo của góc giữa SC và mặt phẳng (ABCD) bằng 450
Đáp án C
Phương pháp: Thể tích khối chóp V = 1 3 S d . h : h là chiều cao của khối chóp, S là diện tích đáy.
Phương pháp xác định góc giữa đường thẳng và mặt phẳng: Góc giữa đường thẳng và mặt phẳng chính là góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng.
Đáp án A
Góc giữa mặt phẳng và đường thẳng là góc tạo bởi đường thẳng đó với hình chiếu của nó lên mặt phẳng. Ở đây S A ⊥ A B C D ⇒ góc S C A = α là góc giữa Sc và (ABCD)
Ta có:
Tan α = S A A C = S A A B 2 + A D 2 = 3 a a 2 + 2 a 2 = 3
⇒ α = 60 0
a) Các cạnh đối diện của hình chữ nhật bằng nhau (AB = CD = 4,5 cm, BC = AD = 2,5 cm).
Các góc của hình chữ nhật đều bằng nhau và bằng \( 90^0\)
b) AB và CD song song với nhau.
AD và BC song song với nhau.
c) AC và BD bằng nhau (cùng bằng 5,1 cm).
Xét ΔABD vuông tại A có:
Do ABCD là hình chữ nhật tâm I nên:
AI = IC = ID = 1/2 BD = 1
ΔICD có ID = IC = DC = 1
⇒ΔICD đều ⇒ ∠(DIC) = 60o
Ta có: ∠(DIC) + ∠(AID ) = 180o⇒ ∠(AID ) = 180o- 60o= 120o