Chứng minh rằng nếu cộng thêm giá trị với một số a thì số trung bình cộng cũng được tăng thêm a.
Giải giúp mk với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ:
Khi giữ nguyện:
\(\frac{x_1+x_2+x_3+....+x_n}{n}=Z\)
Khi tăng thêm:
\(\frac{x_1+20+x_2+20+x_3+20+.......+x_n+20}{n}\)\(=\frac{\left(x_1+x_2+x_3+.....+x_n\right)+20n}{n}=Z+20\)
Chúc bạn học tốt!
Gọi các giá trị và tần số lần lượt là: \(x_1;x_2;...;x_k\)và \(n_1;n_2;...;n_k\)
Gọi số trung bình cộng là: \(\overline{X}\)
Gọi a là số bất kì
Theo đề bài ta có:
\(\overline{X}=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}\)
Suy ra: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}+a\)
Mà \(N=n_1+n_2+...+n_k\)
Do vậy: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2+n_2+...+x_k\cdot n_k+a\left(n_1+n_2+...+n_k\right)}{N}\)
Tức: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k+a\cdot n_1+a\cdot n_2+...+a\cdot n_k}{N}\)
Vậy \(\overline{X}+a=\frac{\left(x_1+a\right)\cdot n_1+\left(x_2+a\right)\cdot n_2+...+\left(x_k+a\right)\cdot n_k}{N}\)(đpcm)