Chọn đáp án đúng
A. cos4x = 2 cos 2 x - 1
B. cos4x = 4 cos 2 x - 1
C. sin4x = 4sinxcosx
D. sin4x = 2sin2xcos2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
d: cos^2x=1
=>sin^2x=0
=>sin x=0
=>x=kpi
a: =>sin 4x=cos(x+pi/6)
=>sin 4x=sin(pi/2-x-pi/6)
=>sin 4x=sin(pi/3-x)
=>4x=pi/3-x+k2pi hoặc 4x=2/3pi+x+k2pi
=>x=pi/15+k2pi/5 hoặc x=2/9pi+k2pi/3
b: =>x+pi/3=pi/6+k2pi hoặc x+pi/3=-pi/6+k2pi
=>x=-pi/2+k2pi hoặc x=-pi/6+k2pi
c: =>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi
=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2
a, Ta có: sin 4 x + cos 4 x = sin 2 x + cos 2 x 2 - 2 sin 2 x . cos 2 x = 1 - 2 sin 2 x . cos 2 x
b, Ta có: sin 6 x + cos 6 x = sin 2 x + cos 2 x 3 - 3 sin 2 x cos 2 x sin 2 x + cos 2 x = 1 - 3 sin 2 x cos 2 x
\(sin\dfrac{3x}{2}\left(cosx+cos4x+cos7x\right)\)
\(=\)\(sin\dfrac{3x}{2}.cosx+sin\dfrac{3x}{2}.cos4x+sin\dfrac{3x}{2}.cos7x=\dfrac{1}{2}\left[sin\dfrac{x}{2}+sin\dfrac{5x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{5x}{2}\right)+sin\dfrac{11x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{11x}{2}\right)+sin\dfrac{17x}{2}\right]\)
\(=\dfrac{1}{2}\left(sin\dfrac{x}{2}+sin\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.2.sin\dfrac{9x}{2}.cos4x=sin\dfrac{9x}{2}.cos4x\)
\(sin\dfrac{3x}{2}\left(sinx+sin4x+sin7x\right)\)
\(=sin\dfrac{3x}{2}.sinx+sin\dfrac{3x}{2}.sin4x+sin\dfrac{3x}{2}.sin7x\)\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{5x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-5x}{2}-cos\dfrac{11x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-11x}{2}-cos\dfrac{17x}{2}\right)\)
\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.-2.sin\dfrac{9x}{2}.sin\left(-4x\right)=sin\dfrac{9x}{2}.sin4x\)
Có \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}\)
\(=\dfrac{sin\dfrac{3x}{2}\left(cos7x+cos4x+cosx\right)}{sin\dfrac{3x}{2}\left(sin7x+sin4x+sinx\right)}\)\(=\dfrac{sin\dfrac{9x}{2}.cos4x}{sin\dfrac{9x}{2}.sin4x}\)\(=\dfrac{cos4x}{sin4x}\)
\(\Rightarrow\dfrac{cos4x}{sin4x}=\dfrac{1}{2}\)
\(\Leftrightarrow2cos4x=sin4x\)
\(\Leftrightarrow4.cos^24x=sin^24x\)
\(\Leftrightarrow4.cos^24x=1-cos^24x\)\(\Leftrightarrow cos^24x=\dfrac{1}{5}\Leftrightarrow\dfrac{1+cos8x}{2}=\dfrac{1}{5}\)
\(\Leftrightarrow cos8x=-\dfrac{3}{5}\)
Vậy..
\(\text{1) }3sinx-4cosx=1\\ \Leftrightarrow cos^2x+\left(\frac{4cosx+1}{3}\right)^2=1\\ \Leftrightarrow cosx=\frac{-4\pm6\sqrt{6}}{25}\\ \\ \Leftrightarrow x=arccos\left(\frac{-4\pm6\sqrt{6}}{25}\right)+k2\pi\)
\(2\text{) }\sqrt{3}sinx-cosx=1\\ \Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sinx-sin\frac{\pi}{6}\cdot cosx=\frac{1}{2}\\ \Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin\frac{\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+a2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+a2\pi\\x=\pi+b2\pi\end{matrix}\right.\)
\(3\text{) }\sqrt{3}cosx+sinx=-2\\ \Leftrightarrow\frac{\sqrt{3}}{2}cosx+\frac{1}{2}sinx=-1\\ \Leftrightarrow sin\frac{\pi}{3}\cdot cosx+cos\frac{\pi}{3}\cdot sinx=-1\\ \Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=-1=sin\frac{3\pi}{2}\\ \\ \Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{7\pi}{6}+k2\pi\)
\(4\text{) }cos4x-sin4x=1\\ \Leftrightarrow cos^24x+\left(cos4x-1\right)^2=1\\ \\ \Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+a\pi\\4x=b2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{a\pi}{4}\\x=\frac{b\pi}{2}\end{matrix}\right.\)
\(5\text{) }\sqrt{3}cos4x+sin4x-2cos3x=0\\ \Leftrightarrow\frac{\sqrt{3}}{2}cos4x+\frac{1}{2}sin4x=cos3x\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos4x+sin\frac{\pi}{3}\cdot sin4x=cos3x\\ \Leftrightarrow cos\left(4x-\frac{\pi}{3}\right)=cos3x\\ \Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{3}=3x+a2\pi\\4x-\frac{\pi}{3}=-3x+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+a2\pi\\x=\frac{\pi}{21}+\frac{b2\pi}{7}\end{matrix}\right.\\ \Leftrightarrow x=\frac{\pi}{21}+\frac{k2\pi}{7}\)
\(6\text{) }cos^2x=3sin2x+3\\ \Leftrightarrow\frac{cos2x+1}{2}=3sin2x+3\)
Giải tương tự vd 1 và 4
7) Giải tương tự vd 1 và 4
\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)
\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)
b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)
c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)
d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)
\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)
e/
\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)
\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)
1.
\(2sin\left(x+10^o\right)-\sqrt{12}cos\left(x+10^o\right)=3\)
\(\Leftrightarrow\dfrac{1}{2}sin\left(x+10^o\right)-\dfrac{\sqrt{3}}{2}cos\left(x+10^o\right)=\dfrac{3}{4}\)
\(\Leftrightarrow sin\left(x+50^o\right)=\dfrac{3}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+50^o=arcsin\left(\dfrac{3}{4}\right)+k360^o\\x+50^o=180^o-arcsin\left(\dfrac{3}{4}\right)+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-50^o+arcsin\left(\dfrac{3}{4}\right)+k360^o\\x=130^o-arcsin\left(\dfrac{3}{4}\right)+k360^o\end{matrix}\right.\)
2.
\(\sqrt{3}sin4x-cos4x=\sqrt{3}\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin4x-\dfrac{1}{2}cos4x=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(4x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\4x-\dfrac{\pi}{3}=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{12}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Đáp án: D
Ta có: sin4x = sin2(2x) = 2sin2xcos2x