K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

14 tháng 10 2018

a,  3n + 6 chia hết cho n 
vì 3n chia hết cho n => để 3n + 6 chia hết cho n thì 6 phải chia hết cho n 
=>n ЄƯ {1;2;3;6}  vậy n = 1 ; 6 ;2;3

b, (5n-5)chia hết cho n

vì 5n chia hết cho n => để 5n - 5 chia hết cho n thì 5  phải chia hết cho n 
=>n Є {1;5}  vậy n = 1 ; 5 

15 tháng 10 2018

Để mk làm tiếp mấy bài còn lại nhé!

c) ta có: 3n + 9 chia hết cho n + 2

=> 3n + 6 + 3  chia hết cho n + 2

3.(n+2) + 3  chia hết cho n + 2

mà 3.(n+2)  chia hết cho n + 2

=> 3  chia hết cho n + 2

...

bn tự  làm tiếp nhé!

d) ta có: 4n + 8  chia hết cho n  - 2

=> 4n - 8 + 16  chia hết cho n  - 2

4.(n-2) + 16  chia hết cho n - 2

mà 4.(n-2)  chia hết cho n - 2

=> 16  chia hết cho n - 2

...

e) ta có: 3n + 8  chia hết cho 2n + 1

=> 2.(3n+8)  chia hết cho 2n + 1

6n + 16  chia hết cho 2n + 1

6n + 3 + 13  chia hết cho 2n + 1

3.(2n+1) + 13  chia hết cho 2n + 1

mà 3.(2n+1)  chia hết cho 2n + 1

=> 13  chia hết cho 2n + 1

...

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

4 tháng 2 2020

a) Ta có : n+2\(⋮\)n-3

\(\Rightarrow\)n-3+5\(⋮\)n-3

Vì n-3\(⋮\)n-3 nên 5\(⋮\)n-3

\(\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

+) n-3=-1\(\Rightarrow\)n=2  (t/m)

+) n-3=1\(\Rightarrow\)n=4  (t/m)

+) n-3=-5\(\Rightarrow\)n=-2  (t/m)

+) n-3=5\(\Rightarrow\)n=8  (t/m)

Vậy n\(\in\){-2;2;4;8}

4 tháng 2 2020

b) Ta có : 3n+5\(⋮\)n+1

\(\Rightarrow\)3n+3+2\(⋮\)n+1

\(\Rightarrow\)3(n+1)+2\(⋮\)n+1

Vì 3(n+1)\(⋮\)n+1 nên 2\(⋮\)n+1

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

...

Đến đây tự làm

2:

a: Gọi d=ƯCLN(4n+7;2n+3)

=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

=>d=1

=>ƯCLN(4n+7;2n+3)=1

b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)

=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)

=>\(1⋮d\)

=>d=1

=>Đây là phân số tối giản

8 tháng 10 2018

\(a,\left(n+5\right)⋮\left(n+2\right)\)

\(\left(n+2+3\right)⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)

\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)

b,c,d Tự làm

* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)

Với p = 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT

Với p = 3k + 2

=> p + 8 = 3k + 10 là SNT

=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .

Vậy p + 100 là hợp số

22 tháng 11 2021

\(a,\Rightarrow3\left(n+2\right)-7⋮\left(n+2\right)\\ \Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow n\in\left\{-9;-3;-1;5\right\}\\ b,\Rightarrow\left(n^2+5n-5n-25+23\right)⋮\left(n+5\right)\\ \Rightarrow\left[n\left(n+5\right)-5\left(n+5\right)+23\right]⋮\left(n+5\right)\\ \Rightarrow n+5\inƯ\left(23\right)=\left\{-23;-1;1;23\right\}\\ \Rightarrow n\in\left\{-28;-6;-4;18\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:
a.

$3n-1\vdots n+2$

$\Rightarrow 3(n+2)-7\vdots n+2$

$\Rightarrow 7\vdots n+2$

$\Rightarrow n+2\in \left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{-1; -3; 5; -9\right\}$

b.

$n^2-2\vdots n+5$

$\Rightarrow n(n+5)-5(n+5)+23\vdots n+5$

$\Rightarrow (n+5)(n-5)+23\vdots n+5$

$\Rightarrow 23\vdots n+5$

$\Rightarrow n+5\in\left\{\pm 1;\pm 23\right\}$

$\Rightarrow n\in\left\{-4; -6; 18; -28\right\}$