K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(d=UCLN\left(n+1;n+2\right)\)

\(\Leftrightarrow n+2-n-1⋮d\)

hay d=1

b: \(d=UCLN\left(2n+2;2n+3\right)\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

hay d=1

25 tháng 12 2022

a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp

nên n+2 và n+3 là hai số nguyên tố cùng nhau

b) gọi d = ƯCLN(2n + 3; 3n + 5)

--> 3(2n + 3) và 2(3n + 5) chia hết cho d

--> (6n + 10) - (6n + 9) chia hết cho d

--> 1 chia hết cho d

--> d = 1

--> 2n + 3 và 3n + 5 nguyên tố cùng nhau

25 tháng 12 2022

à mà bạn ơi, bạn có thể cho mình biết tại sao 3(2n + 3) lại = (6n + 10) không nhỉ?lolang

 

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

15 tháng 12 2021

 Đặt UCLN ( n+2; n+3 ) = d

=> n + 2 chia hết cho d ; n + 3 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

15 tháng 10 2023

1:

a: Gọi d=ƯCLN(n+5;n+4)

=>\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\)

=>\(n+5-n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>n+4 và n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+5;n+2)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+5⋮d\\2n+4⋮d\end{matrix}\right.\)

=>\(2n+5-2n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+5 và n+2 là hai số nguyên tố cùng nhau

c: Gọi d=ƯCLN(3n+7;n+2)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\3n+6⋮d\end{matrix}\right.\)

=>\(3n+7-3n-6⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+7 và n+2 là hai số nguyên tố cùng nhau

d: Gọi d=ƯCLN(2n+1;3n+1)

=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

=>\(6n+3-6n-2⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+1 và 3n+1 là hai số nguyên tố cùng nhau

15 tháng 10 2023

a) Gọi d là ƯCLN  của n + 4 và n + 5 

⇒ n + 4 ⋮ d và n + 5 ⋮ d 

⇒ (n + 5 - n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy n + 4 và n + 5 luôn là cặp SNT cùng nhau 

b) Gọi d là ƯCLN của 2n + 5 và n + 2

⇒ 2n + 5 ⋮ d và n + 2 ⋮ d

⇒ 2n + 5 ⋮ d và 2(n + 2) ⋮ d

⇒ (2n + 5 - 2n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy  2n + 5 và n + 2 luôn là cặp SNT cùng nhau 

c) Gọi d là ƯCLN của n + 2 và 3n + 7 

⇒ n + 2 ⋮ d và 3n + 7 ⋮ d

⇒ 3(n + 2) ⋮ d và 3n + 7 ⋮ d

⇒ (3n + 7 - 3n - 6) ⋮ d 

⇒ 1 ⋮ d 

⇒ d = 1

Vậy n + 2 và 3n + 7 luôn là cặp SNT cùng nhau

d) Gọi d là ƯCLN của 2n + 1 và 3n + 1

⇒ 2n + 1 ⋮ d và 3n + 1 ⋮ d

⇒ 3(2n + 1) ⋮ d và 2(3n + 1) ⋮ d

⇒ (6n + 3 - 6n - 2) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2n + 1 và 3n + 1 luôn là cặp SNT cùng nhau