Chứng tỏ rằng tổng tất cả các số có 2 chữ số được lập từ ba chữ số a; b; c khác nhau và khác 0 không thể nhỏ hơn 132.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
5 tháng 10 2019
Gọi A là tổng các số có 2 chữ số khác nhau khác không được lập từ 3 chữ số a,b,c ta có: A= ab+ac+ba+bc+ca+cb= a x10 + b + a x10 + c + b x10 + a + b x 10 + c + c x 10 + a + c x 10 + b = 20 x (a+b+c) + 2 (a+b+c) Do a,b,c khác nhau và khác 0 nên tổng a+b+c nhỏ nhất là: 1+2+3=6 Vậy giá trị nhỏ nhất của A là: 20 x 6 + 2 x 6 =132 -> A không thể nhỏ hơn 132
Gọi A là tổng các số có 2 chữ số khác nhau khác không được lập từ 3 chữ số a,b,c ta có:
A= ab+ac+ba+bc+ca+cb= a x10 + b + a x10 + c + b x10 + a + b x 10 + c + c x 10 + a + c x 10 + b
= 20 x (a+b+c) + 2 (a+b+c)
Do a,b,c khác nhau và khác 0 nên tổng a+b+c nhỏ nhất là: 1+2+3=6
Vậy giá trị nhỏ nhất của A là: 20 x 6 + 2 x 6 =132 -> A không thể nhỏ hơn 132