a) Tính tổng số đo các góc ngoài của tứ giác, ngũ giác, thập giác,
b) Chứng minh tổng số đo các góc ngoài của một đa giác (lồi) là 360°.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa giác có tổng số đo các gióc bằng 1 nửa tổng số đo các góc ngoài
a, Tam giác
b, Tứ giác
c, ngũ giác
d lục giác
đáp á là: b, Tứ giác
a)Vẽ các đường chéo xuất phát từ một đỉnh của n - giác, ta được (n - 2) tam giác.
Tổng các góc của hình n - giác bằng tổng các góc của (n - 2) tam giác, tức là có số đo bằng (n - 2).1800.
b) ta có: (n - 2).1800 = (12 - 2 ).1800 = 18000
Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của hình n-giác bằng 180 0 . Hình n-giác có n đỉnh nên tổng số đo các góc trong và góc ngoài của đa giác bằng n. 180 0 . Mặt khác, ta biết tổng các góc trong của hình n-giác bằng (n – 2). 180 0
Vậy tổng số đo các góc ngoài của hình n-giác là:
n. 180 0 – (n – 2). 180 0 = n. 180 0 – n. 180 0 + 2. 180 0 = 360 0
a) Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của tứ giác (lồi) là 1800 Þ Tổng số đo các góc trong và các góc ngoài của tứ giacs là 4.1800 = 7200.
Mặt khác, tổng số đo các góc trong của tứ giác là: (4-2).1800 = 3600.
Þ Tổng số đo các góc ngoài của tứ giác là: 7200 - 3600 = 3600
Tương tự, ta cũng tính được tổng số đo các góc ngoài của ngũ giác và thập giác là 3600.
b) Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của hình n - giác (lồi) là 1800 Þ Tổng số đo các góc trong và các góc ngoài của đa giác là n.1800.
Mặt khác, tổng số đo các góc trong của đa giác là (n - 2).1800.
Þ Tổng số đo các góc ngoài của đa giác là:
n.1800 - (n - 2).1800 = 3600.