Cho hình bình hành ABCD có cạnh AB = 10 3 c m , AD = 8cm, A ^ = 60°. Tính diện tích của hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABCD}=AB\cdot DH=8\cdot\left(30-10\right)=8\cdot20=160\left(cm^2\right)\)
*Khi quay hình bình hành ABCD một vòng quanh cạnh AB thì cạnh AD và BC vạch nên hai hình nón bằng nhau có đường sinh AD = BC = x, cạnh CD vạch nên hình trụ có bán kính đáy bằng bán kính hình nón
Trong tam giác AHD,ta có:
Diện tích toàn phần của hình tạo thành bằng tổng diện tích xung quanh của hai hình nón và diện tích xung quanh của hình trụ
*Khi quay hình bình hành ABCD một vòng quanh AD thì cạnh AB và DC vạch nên hai hình nón bằng nhau có đường sinh AB = DC = 1, cạnh BC vạch nên hình trụ có bán kính đáy bằng bán kính đáy của hình nón
Ta có:
Diện tích toàn phần của hình tạo thành bằng tổng diện tích xung quanh của hai hình nón và diện tích xung quanh của hình trụ
Hình đa giác đó gồm hình bình hành ABCD, hình vuông ABMN, BHGC, CFED, DKJA.
S A B M N = S C D E F = a 2
S B H G C = S D K J A = b 2
Diện tích đa giác bằng :
S A B M N = S C D E F = a 2
S B H G C = S D K J A = b 2
Hình đa giác đó gồm hình bình hành ABCD, hình vuông ABMN, BHGC, CFED, DKJA.
\(S_{ABMN}=S_{CDEF}=a^2\)
\(S_{BHGC}=S_{DKJA}=b^2\)
Chu vi hình bình hành là:
\(\left(8+5\right)\times2=13\times2=26\left(cm\right)\)
Diện tích hình bình hành là:
\(8\times4=32\left(cm^2\right)\)
Kẻ DH ^ AB tại H
⇒ A H = A D 2 = 4 c m
Áp dụng định lý Pytago trong D vuông ADH Þ DH = 4 3 cm.
ÞSABCD = DH.AB = 120cm2