Cho hình vuông ABCD co AC cắt BD tại O. M là điểm bất kì thuộc cạch BC ( M khác B,C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE=CM.
a) CM: tam giác OEM vuông cân
b) CM : ME // BN.
từ C kẻ CH vuông góc với BN ( H thuộc BN). CMR : O,M,H thẳng hàng
a) Xét tam giác OEB và tam giác OMC có:
góc OBE = góc OCM (t/c đường chéo hv)
OC = OB ( nt)
EB = MC (gt)
Vậy tam giác OEB = tam giác OMC (c-g-c)
=> EO = MO (1) và góc EOB = góc MOC
mà góc BOC = góc BOM + góc MOC = 90 độ
=> góc EOM = góc EOB + góc BOM = 90 độ (2)
Từ (1),(2) => tam giác OEM vuông cân
b) Ta có: AB//CN (N thuộc DC)
ÁP dụng định lí Ta - let tá được:
AM/MN= BM/MC mà BM=AE và MC=BE (gt)
=> AM/MN = AE/BE
=> EM//BN (đ/l Ta - let đảo)
Phần còn lại mình còn đang suy nghĩ.