K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Chọn D.

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Câu 1 Mã: 78331Giải bất phương trình 2x+1x+2≤12x+1x+2≤1−2≤x≤−1−2≤x≤−1−2≤x<1−2≤x<1−2<x≤1−2<x≤1Vô nghiệmCâu 2 Mã: 78319Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:S={x |−13<x<65−13<x<65}S={x| x>73x>73 }S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }S={x| −13<x<65−13<x<65 hoặc x>73x>73 }Câu 3 Mã: 78314Tập nghiệm của bất phương trình tích (x+3)(x-7)S={x\-3 < x...
Đọc tiếp

Câu 1 Mã: 78331

Giải bất phương trình 2x+1x+2≤12x+1x+2≤1

−2≤x≤−1−2≤x≤−1

−2≤x<1−2≤x<1

−2<x≤1−2<x≤1

Vô nghiệm

Câu 2 Mã: 78319

Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:

S={x |−13<x<65−13<x<65}

S={x| x>73x>73 }

S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }

S={x| −13<x<65−13<x<65 hoặc x>73x>73 }

Câu 3 Mã: 78314

Tập nghiệm của bất phương trình tích (x+3)(x-7)

S={x\-3 < x hoặc x < 7}

S={x\-3 < x < 7}

S={x\-3 > x > 7}

S={-3;7}

Câu 4 Mã: 78328

Giải bất phương trình: 3xx−3>3x−1x−33xx−3>3x−1x−3

x>−3x>−3

x≥−3x≥−3

x>3x>3

x≥3x≥3

Câu 5 Mã: 78330

Giải bất phương trình: 1x+4≤1x−21x+4≤1x−2

x≥2x≥2

x≤−4x≤−4

x≥2x≥2 hoặc x≤−4x≤−4

x≥2x≥2 vàx≤−4x≤−4

Câu 6 Mã: 78316

Bất phương trình (2x-3)(x22+1)≤0≤0. Tập nghiệm của bất phương trình là:

S={x\x≤32≤32}

S={x\x≥32≥32}

S={x\x<32<32}

Đáp án khác

Câu 7 Mã: 78332

Số nghiệm nguyên thỏa mãn bất phương trình (x+5)(7−2x)>0(x+5)(7−2x)>0

8

7

9

10

Câu 8 Mã: 78321

Tìm x sao cho (x-2)(x-5)>0

x>5 và x<2

x>2

x>5 hoặc x<2

x>5

Câu 9 Mã: 78327

Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình: x−3x+5+x+5x−3<2x−3x+5+x+5x−3<2

4

5

3

6

Câu 10 Mã: 78315

Cho bất phương trình -2x22+11x-15>0. Giá trị  x nguyên thỏa mãn bất phương trình là:

x=3

x=2

x=-2

không có giá trị x nào thỏa mãn

Câu 11 Mã: 78318

Cho bất phương trình: (2x+3)(x+1)(3x+5)≥≥ 0, tập nghiệm của bất phương trình là:

S={x | −53≤x≤−32−53≤x≤−32}

S={x | x≥−1x≥−1}

S={x| −53≤x≤−32−53≤x≤−32 hoặc x≥−1x≥−1}

S={x| −53<x<−32−53<x<−32 hoặc x>−1x>−1}

Câu 12 Mã: 78322

Tìm x sao cho x+2x−5<0x+2x−5<0

−2<x<4−2<x<4

−2<x<5−2<x<5

x<5x<5

x>−2x>−2

Câu 13 Mã: 78326

Giải bất phương trình: 4x+32x+1<24x+32x+1<2

x=−12x=−12

x≠−12x≠−12

x>−12x>−12

x<−12x<−12

Câu 14 Mã: 78313

Tập nghiệm của bất phương trình (x-1)(x+2)>0 là:

S={x/x<1 hoặc x>-2}

S={x/x<-2 hoặc x>1}

S={x/x>1 hoặc x<-2}

S={x/x>-2 hoặc x<1}

Câu 15 Mã: 78320

Bất phương trình (2x+1)(x2−4)>0(2x+1)(x2−4)>0  có tập nghiệm là:

S={x| -2 < x < −12−12 hoặc x>2}

S={x | -2 < x < −12−12 hoặc x≥≥ 2}

S={x | -2≤≤ x < −12−12 hoặc x>2}

S={x | -2 < x < −12−12 hoặc x=2}

Câu 16 Mã: 78329

Giải bất phương trình sau: 3x−4x+2≥03x−4x+2≥0

2<x<122<x<12

−12≤x≤−2−12≤x≤−2

x≤−2x≤−2

2≤x≤122≤x≤12

Câu 17 Mã: 78317

Cho bất phương trình:x2−4x+4≤0x2−4x+4≤0 , tập nghiệm của bất phương trình là:

S={x\x≤≤ 2}

S={2}

S={x\x< 2}

Đáp án khác

Câu 18 Mã: 78325

Tìm nghiệm nguyên dương của bất phương trình:

x2−2x−4(x+1)(x−3)>1x2−2x−4(x+1)(x−3)>1  (1)

x∈{1}x∈{1}

x∈{2}x∈{2}

x∈{1;2}x∈{1;2}

Vô nghiệm

Câu 19 Mã: 78324

Giải bất phương trình: (x−4)(9−x)≥0(x−4)(9−x)≥0

x≥4x≥4

x<9x<9

4≤x≤94≤x≤9

Vô nghiệm

Câu 20 Mã: 78323

Bất phương trình x2−2x+1<9x2−2x+1<9

−2<x<4−2<x<4

−2≤x<4−2≤x<4

−2<x<6−2<x<6

−2<x≤6

0
17 tháng 1 2019

\(Giải:\)

\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)

\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)

\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)

\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)

\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)

BPT đã được giải quyết

20 tháng 4 2019

1a

x^2-8x<0

<=> x(x-8)<0

th1: x<0 và x-8>0

 x<0 và x>8

<=> 8<x<0 ( vô lý)

th2: x>0 và x-8<0

<=> x>0 và x<8

<=> 0<x<8( tm)

vậy........

20 tháng 4 2019

a) \(x^2-8x< 0\)

\(\Leftrightarrow x\left(x-8\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\)         hoặc   \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)

\(\Leftrightarrow0< x< 8\)

b) \(x^2< 6x-5\)

\(\Leftrightarrow x^2-6x+5< 0\)

\(\Leftrightarrow x^2-x-5x+5< 0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\)          hoặc  \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)

\(\Leftrightarrow1< x< 5\)

c) \(\frac{x-3}{x-2}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)  (loại)  hoặc  \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)

\(\Leftrightarrow2< x< 3\)

d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )

\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)

\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)

\(\Leftrightarrow\frac{-x+7}{x-3}>0\)

\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\)     hoặc  \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)  

\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\)              hoặc   \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)

\(\Leftrightarrow3< x< 7\)