K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

24 tháng 3 2020

1) Với x = 0; y = 2

A = (x^2 - y^2 + x + y)/(2 + x^2 + y^2)

A  = (0^2 - 2^2 + 0 + 2)/(2 + 0^2 + 2^2)

A = -1/3

3) Với x = 2; y = -2

A = (x^2 - y^2 + x + y)/(2 + x^2 + y^2)

A = [2^2 - (-2)^2 + 2 + (-2)]/[2 + 2^2 + (-2)^2]

A = 0

10 tháng 1 2021

Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Vì \(x+y\ne0\Rightarrow x=2y\)

=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

15 tháng 11 2021

A∈∅

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

11 tháng 3 2019

Ta có x+y+1=0=>xây =-1

A = x3+x2.y- x.y2-y3 + x2 - y+2.x+2.y +3

A = x.(x+y)- y.(x+y) + x² - y² +2.(x+y)+3

A= x².(-1)-y².(-1)+ x²-y²+ (-2)+3

A= x².0-y².0+1=1

10 tháng 4 2020

Ta có : B = x3 + x2y -xy2 -y3 +x2 -y2 + 2x + 2y + 3 

               = x2 (x+y+1)-y2(x + y + 1)+2(x+y+1) +2

               = x2 . 0         - y2 . 0          + 2. 0       + 2 

               = 2 

13 tháng 4 2020

ta có B=x^2(x+y)-y^2(x+y)+x^2-y^2+2(x+y)+3

=)B=x^2(x+y)+x^2-y^2(x+y)-y^2+2(x+y)+2+1

=)B=x^2(x+y+1)-y^2(x+y+1)+2(x+y+1)+1

=)B=0-0+0+1=1