Tìm giá trị lớn nhất của phân thức E = 3 x 2 - 2 x + 3 x 2 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
E = x(x-3)2 - (x+2)3 + 11x(x-1)
E= x(x2 - 6x + 9) - (x3 + 3.x2.2 + 3.x.22 + 23) + 11x2 -11x
E= x3 - 6x2 + 9x - x3 - 6x2 - 12x - 8 + 11x2 - 11x
E= (x3 - x3) - (6x2 + 6x2 - 11x2 ) + (9x - 12x - 11x) -8
E= -x2 -14x -8
E= - (x2 + 14x +8)
E= - (x2 + 2.x .7 + 72 -41)
E = [(x+7)2 -41]
Với mọi x thì (x+7)2 >=0
=> (x+7)2 - 41 >= -41
=> - [(x+7)2 -41] =< 41
Dấu bằng xảy ra khi: (x+7)2 =0
=> x+7 =0
=> x= -7
Vậy giá trị lớn nhất của E là 41 khi x= -7
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
1. Tìm giá trị nhỏ nhất của biểu thức P= 2x2 - 6x
2. Tìm giá trị lớn nhất của biểu thức E=4x - x2 + 3
ta có
P = 2x^2 - 6x
= 2( x^2 - 3x + 9/4) - 9/4
= 2( x-3/2)^2 - 9/4
nhận xét 2(x-3/2)^2 >=0
=> 2(x-3/2)^2 - 9/4 >=-9/4
dấu = xảy ra khi và chỉ khi
x- 3/2 = 0
=> x= 3/2
4x - x^2 + 3
= -x^2 + 4x - 4 +7
= -(x^2 - 4x + 4) + 7
= -(x-2)^2 + 7
nhận xét -(x-2)^2 <=0
=> -(x-2)^2 + 7 <=7
đấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2