Chứng minh phân thức 7 n - 5 3 n - 2 là tối giản với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn giải:
Gọi d là ƯCLN của 2n + 5 và 3n + 7
⇒ (2n + 5)⋮ d và (3n + 7)⋮ d
⇒ [3(2n + 5) - 2(3n + 7)] = 1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Hướng dẫn giải:
Gọi d là ƯCLN của 12n + 1 và 30n + 2
⇒ (12n + 1)⋮ d và (30n + 2)⋮ d
⇒ [5(12n + 1) - 2(30n + 2)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)
\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)
\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau
Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên
Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)
⇒ 6n+7 ⋮ d
3n+2 ⋮ d
⇒6n+7 - 2(3n+2)⋮ d
⇒3⋮d
d∈(1;3)
Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha
Hướng dẫn giải:
Gọi d là ƯCLN của 7n - 5 và 3n - 2
⇒ (7n - 5)⋮ d và (3n - 2)⋮ d
⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N