Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=2sinx + cosx +1. Tổng M2+ m2 có giá trị là
A. 18
B. 36
C. 12
D. 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Điều kiện x ∈ ℝ
y = cos x + cos x − π 3 = cos x + cos x . cos π 3 + sin x . sin π 3 = cos x + 1 2 cos x + 3 2 sin x
= 3 2 cos x + 3 2 sin x
Cách 1: y = 3 3 2 cos x + 1 2 sin x = 3 sin x + π 3 Suy ra − 3 ≤ y ≤ 3
Vậy m = − 3 ; M = 3 và do đó M 2 + m 2 = 6
Cách 2:
Áp dụng bất đẳng thức Bunyakovsky ta có:
3 2 cos x + 3 2 sin x 2 ≤ 3 2 2 + 3 2 2 cos x 2 + sin x 2
⇔ 3 2 cos x + 3 2 sin x 2 ≤ 3 ⇔ − 3 ≤ y ≤ 3
⇒ M = 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = 3
Tương tự ta có m = − 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = − 3
⇒ M 2 + m 2 = 3 2 + − 3 2 = 6
Vậy ta chọn A.
Chọn C
Đặt
Xét hàm trên đoạn [0;1] có
Suy ra hàm số đồng biến trên [0;1]
và
Khi đó,
Đáp án A
Ta có: y = cos x + 2 sin x + 3 2 cos x − sin x + 4
⇒ y 2 cos x − sin x + 4 = cos x + 2 sin x + 3
⇔ 2 + y sin x + 1 − 2 y cos x = 4 y − 3 1
PT (1) có nghiệm ⇔ 2 + y 2 + 1 − 2 y 2 ≥ 4 y − 3 2
⇔ 11 y 2 − 24 y + 4 ≤ 0 ⇔ 2 11 ≤ y ≤ 2
Suy ra M = 2 m = 2 11 ⇒ M . m = 4 11
Đáp án D
*Cách 2: Đặt ẩn phụ t = cos x đưa về hàm bậc nhất trên bậc nhất, rồi tìm min, max của hàm đó trên [-1;1]
Đáp án C
Phương pháp:
Biến đổi hàm số về hàm số bậc hai đối với cos x , đặt cos x = t và tìm GTLN, GTNN của hàm số với chú ý
Cách giải:
Ta có: y = 2 sin 2 x − cos x + 1
= 2 1 − cos 2 x − cos x + 1 = − 2 cos 2 x − cos x + 3
Đặt t = cos x − 1 ≤ t ≤ 1
y t = − 2 t 2 − t + 3 ⇒ y ' t = − 4 t − 1
y ' 0 = 0 ⇔ t = − 1 4 ∈ − 1 ; 1
⇒ M = max y = y − 1 4 = 25 8 ; m = min y = y 1 = 0 ⇒ M + m = 25 8
Chú ý khi giải:
HS thường nhầm lẫn khi tìm GTLN, GTNN của hàm số, hoặc ở bước đặt ẩn phụ quên không đặt điều kiện cho ẩn mới.
Chọn B
Hàm số xác định và liên tục trên đoạn [- 5 ; 5 ]
Ta có
Ta có:
Suy ra