cho a,b,c>0 và abc=1. chứng minh rằng \(\frac{1}{a^3+b^3+1}+\frac{1}{a^3+c^3+1}+\frac{1}{c^3+b^3+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
=> x+y+z=0
Có \(x^3+y^3+z^3-3xyz\)
=\(\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
=\(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2-3xy\right]\)
=0( do x+y+z=0)
=> \(x^3+y^3+z^3=3xyz\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
\(a^3+b^3+1=a^3+b^3+abc\ge ab\left(a+b+c\right)\)
=> \(\frac{\sqrt{1+a^3+b^3}}{ab}\ge\frac{\sqrt{ab\left(a+b+c\right)}}{ab}=\frac{\sqrt{a+b+c}}{\sqrt{ab}}\)
Tuong tu: \(\frac{\sqrt{1+b^3+c^3}}{bc}\ge\frac{\sqrt{a+b+c}}{\sqrt{bc}}\)
\(\sqrt{1+c^3+a^3}\ge\frac{\sqrt{a+b+c}}{\sqrt{ca}}\)
suy ra: \(\frac{\sqrt{1+a^3+b^3}}{ab}+\frac{\sqrt{1+b^3+c^3}}{bc}+\frac{\sqrt{1+c^3+a^3}}{ca}\ge\sqrt{a+b+c}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
\(\ge\sqrt{3\sqrt[3]{abc}}.3\sqrt[3]{\frac{1}{\sqrt{ab}}.\frac{1}{\sqrt{bc}}.\frac{1}{\sqrt{ca}}}=3\sqrt{3}\) (dpcm)
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)
Ta có: \(\left(a-b\right)^2\left(a+b\right)\ge0\Rightarrow a^3+b^3\ge a^2b+ab^2\)
\(\Rightarrow a^3+b^3+abc\ge a^2b+ab^2+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Chứng minh tương tự rồi cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}\)
Ta có đpcm
Dấu "=" xảy ra khi a=b=c
Bổ đề 1: Với m, n < 1 ta có bất đẳng thức:
\(\frac{1}{1+m^2}+\frac{1}{1+n^2}\le\frac{2}{1+mn}\).
Thật vậy, bất đẳng thức trên tương đương với: \(\left(mn-1\right)\left(m-n\right)^2\le0\) (luôn đúng).
Bổ đề 2: Với m, n, p < 1 ta có bất đẳng thức:
\(\frac{1}{1+m^3}+\frac{1}{1+n^3}+\frac{1}{1+p^3}\le\frac{3}{1+mnp}\left(2\right)\).
Thật vậy, áp dụng bổ đề (1) ta có:
\(VT_{\left(2\right)}=\left(\frac{1}{1+m^3}+\frac{1}{1+n^3}\right)+\left(\frac{1}{1+p^3}+\frac{1}{1+mnp}\right)-\frac{1}{1+mnp}\le\frac{2}{1+\sqrt{m^3n^3}}+\frac{2}{1+\sqrt{mnp^4}}-\frac{1}{1+mnp}\le\frac{4}{1+\sqrt[4]{m^3n^3.mnp^4}}-\frac{1}{1+mnp}=\frac{4}{1+mnp}-\frac{1}{1+mnp}=\frac{3}{1+mnp}\left(đpcm\right)\).
Quay trở lại bài toán.
Đặt \(\left(\sqrt[3]{a},\sqrt[3]{b},\sqrt[3]{c}\right)=\left(x,y,z\right)\). Ta có: \(0< x,y,z< 1\).
BĐT cần chứng minh trở thành:
\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\le\frac{3}{1+2xyz}\left(1\right)\).
Áp dụng BĐT AM - GM và bổ đề 2 ta có: \(VT_{\left(1\right)}\le\frac{1}{1+\left(\sqrt[3]{2}\sqrt{xy}\right)^3}+\frac{1}{1+\left(\sqrt[3]{2}\sqrt{yz}\right)^3}+\frac{1}{1+\left(\sqrt[3]{2}\sqrt{zx}\right)^3}\le\frac{3}{1+\sqrt[3]{2}\sqrt[3]{2}\sqrt[3]{2}\sqrt{xy.yz.zx}}=\frac{3}{1+2xyz}=VP_{\left(1\right)}\left(đpcm\right)\)
Bạn bổ sung cho mình thêm điều kiện ở hai bổ đề:
Bổ đề 1: Thêm m, n > 0.
Bổ đề 2: Thêm m, n, p > 0.
lay ong di qua lay ba di lai cho xin may tick