K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

bình phương 2 vế ^^ ( đơn giản mà)

18 tháng 1 2016

Giỏi thì làm đi

 

21 tháng 3 2016

Điều kiện\(\begin{cases}7x+y\ge0\\2x+y\ge0\end{cases}\); Đặt \(\begin{cases}u=\sqrt{7x+y}\ge0\\v=\sqrt{2x+y}\ge0\end{cases}\)\(\Rightarrow\)\(\begin{cases}u^2=7x+y\\v^2=2x+y\end{cases}\)\(\Rightarrow\)\(x=\frac{u^2-v^2}{5}\)\(y=\frac{7v^2-2u^2}{5}\)

HPT trở thành:     \(\begin{cases}u+v=5\\u^2-v^2-7v^2+2u^2+5v=5\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}u+v=5\\3u^2-8v^2+5v-5=0\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}u=5-v\\3\left(5-v\right)^2-8v^2+5v-5=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\-5v^2-25v+70=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\v^2+5v-14=0\left(\text{*}\right)\end{cases}\)

(*) \(\Leftrightarrow v=2\) (nhận)  hoặc  \(v=-7\) (loại) ; nên  HPT trên  \(\Leftrightarrow\) \(\begin{cases}u=3\\v=2\end{cases}\)

Do đó HPT đã cho trở thành \(\begin{cases}7x+y=9\\2x+y=4\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=1\\y=2\end{cases}\) (phù hợp)

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

26 tháng 11 2023

Đề bị lỗi công thức rồi em nhé!

8 tháng 2 2021

ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)

PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)

\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)

\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)

Từ PT ( II ) ta được : \(x=12-y\)

- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)

\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)

\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)

\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)

\(\Leftrightarrow9y^2-132y+484=0\)

\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)

- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)

Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)