Cho tam giác ABCD vuông tại A, phân giác BF. Từ điểm I nằm giữa B và F vẽ đường thẳng song song với AC cắt AB, BC lần lượt tại M và N. Vẽ đường trong ngoại tiếp tam giác BIN cắt AI tại D. Hai đường thẳng DN và BF cắt nhau tại E. Chứng minh:
a, Bốn điểm A, B, D, E cùng thuộc một đường tròn
b, Năm điểm A, B, C, D, E cùng thuộc một đường tròn. Từ đó suy ra BE vuông góc với CE
a, Chứng minh: A B E ^ = A D E ^
b, Chứng minh được: A C B ^ = B N M ^
=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn
=> BC là đường kính => B E C ^ = 90 0