Cho tam giác ABC. Tính P = sin A. cos( B+ C) + cosA. sin(B + C).
A. P = 0
B. P = 1
C.P= -1
D. P = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử A ^ = α ; B ^ + C ^ = β . Biểu thức trở thành P = cos α cos β − sin α sin β .
Trong tam giác ABC có A ^ + B ^ + C ^ = 180 ° ⇒ α + β = 180 ° .
Do hai góc α và β bù nhau nên sin α = sin β ; cos α = − cos β .
Do đó P = cos α cos β − sin α sin β = − cos 2 α − sin 2 α = − sin 2 α + cos 2 α = − 1 .
Chọn C.
Chọn B.
Ta có: góc A tù nên cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0
Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương
Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.
A. \(\sin A = \sin \,(B + C)\)
Ta có: \((\widehat A + \widehat C) + \widehat B= {180^o}\)
\(\Rightarrow \sin \,(B + C) = \sin A\)
=> A đúng.
B. \(\cos A = \cos \,(B + C)\)
Sai vì \(\cos \,(B + C) = - \cos A\)
C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.
Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)
Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)
D. \(\sin A\,\, \le 0\)
Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)
\( \Rightarrow \sin A > 0\)
=> D sai.
Chọn A
Giả sử A ^ = α ; B ^ + C ^ = β . Biểu thức trở thành P = sin α cos β + cos α sin β .
Trong tam giác ABC, có A ^ + B ^ + C ^ = 180 ° ⇒ α + β = 180 ° .
Do hai góc α và β bù nhau nên sin α = sin β ; cos α = − cos β .
Do đó, P = sin α cos β + cos α sin β = − sin α cos α + cos α sin α = 0 .
Chọn A.