K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Chọn D.

+ Ta có 

y' =  7 x 3 + 3 x 2 + ( 9 - 3 m ) x + 1 ( 3 x 2 + 6 x + 9 - 3 m ) ln 7

Hàm số đồng biến trên [0;1] <=> y'  ≥ 0  ∀ x ∈ [0;1]

hay m  ≤ x 2 + 2 x + 3   v ớ i   0 ≤ x ≤ 1 (1)

11 tháng 11 2019

20 tháng 2 2017

Đáp án là D

8 tháng 5 2018

NV
29 tháng 7 2021

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)

10 tháng 12 2019

NV
28 tháng 1 2021

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\) 

Do hệ số bậc cao nhất của x dương nên:

- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)

- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)

Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất

Từ BBT ta thấy \(x=0\) là cực tiểu

Vậy \(-3\le m< 3\)

24 tháng 6 2021

cho em hỏi là tại sao m≠0 mà đkxđ của m lại là -3<m<3 ạ ?

6 tháng 8 2018

21 tháng 3 2018

4 tháng 1 2022

Tham khảo

undefined

NV
4 tháng 1 2022

- Với \(m=1\) thỏa mãn

- Với \(m\ne1\):

\(f'\left(x\right)=3\left(m-1\right)x^2-10x+m+3\)

\(f\left(\left|x\right|\right)\) có số cực trị bằng \(2k+1\) với \(k\) là số cực trị dương của \(f\left(x\right)\) nên hàm có 3 cực trị khi \(f'\left(x\right)=0\) có đúng 1 nghiệm dương

TH1: \(f'\left(x\right)=0\) có 1 nghiệm bằng 0 \(\Rightarrow m=-3\Rightarrow f'\left(x\right)=-12x^2-10x\) ko có nghiệm dương (loại)

TH2: \(f'\left(x\right)=0\) ko có nghiệm bằng 0 nào \(\Rightarrow f'\left(x\right)=0\) khi và chỉ khi nó có 2 nghiệm trái dấu

\(\Rightarrow ac< 0\Leftrightarrow3\left(m-1\right)\left(m+3\right)< 0\)

\(\Rightarrow-3< m< 1\) 

Vậy \(-3< m\le1\)

16 tháng 1 2018