K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2021

Gọi G là trọng tâm tam giác

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là chân đường vuông góc hạ từ G xuống BC hay M là trung điểm BC

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=3MG=AM=\dfrac{a\sqrt{3}}{2}\)

NV
31 tháng 8 2021

Ủa biểu thức là \(\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\) hay \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) em? Vì vecto không có khái niệm min max, chỉ độ dài vecto mới có min, max thôi

3 tháng 9 2021

dạ, có dấu giá trị tuyệt đối ạ, do em không gõ ra cái dấu đó được nên bị thiếu ạ.

20 tháng 2 2020

A B C D O M

Xét \(\Delta MBD\)cân tại M có : 

\(\widehat{BDM}=60^0\)

\(\Rightarrow\Delta MBD\)là tam giác đều 

\(\Rightarrow\widehat{BDM}=60^0\)

\(\Rightarrow\widehat{BDA}=120^0\)

\(\Rightarrow\)Khi M di chuyển trên cung nhỏ BC thì M di chuyển trên cung tròn ( nằm trên nửa mặt phẳng bờ AB chưa điểm M ) nhìn AB một góc bằng \(120^0\)

Xét \(\Delta DBA\)và \(\Delta MBC\)có :
\(BA=BC\)( vì tam giác ABC đều )

\(\widehat{BAD}=\widehat{BCM}\)( cùng chắn cung BM )
\(\widehat{ABD}=\widehat{CBM}\left(=60^0-\widehat{DBC}\right)\)

Suy ra \(\Delta DBA=\Delta MBC\)

\(\Rightarrow MC=DA\)

\(\Rightarrow MA+MB+MC=MA+MD+DA=2MA\)

\(MA+MB+MC\)lớn nhất khi MA lớn nhất 

\(\Rightarrow AM\)là đường kính của \(\left(O\right)\)

\(\Rightarrow M\)là điểm chính giữa của cung BC

Chúc bạn học tốt !!!