Cho tam giác ABC vuông cân tại A có M; N và H lần lượt là trung điểm của AB; AC và BC. Hỏi tứ giác AMHN là hình gì ? Chọn câu trả lời đúng nhất
A. Hình vuông
B. Hình chữ nhật
C. Hình thoi
D. Hình thang vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
c) Trên tia đối IA lấy G sao cho IA=IG
\(\Rightarrow\)△ADI=△GEI (c-g-c) \(\Rightarrow\)AD//GE.
△DGI=△EAI (c-g-c) \(\Rightarrow\)DG//AE ; DG=AE=AC.
\(90^0+\widehat{BAH}+\widehat{DAG}+90^0+\widehat{GAE}+\widehat{HAC}=360^0\)
\(\Rightarrow\widehat{BAC}+\widehat{DAE}=180^0\)
\(\Rightarrow\widehat{BAC}=\widehat{ADG}\)
\(\Rightarrow\)△ADG=△BAC (c-g-c).
\(\widehat{ABC}+\widehat{BAH}=\widehat{DAG}+\widehat{BAH}=90^0\)
Câu a)
Ta có : góc BAD = góc CAE ( = 90 độ )
=> góc BAD + góc BAC = góc CAE + góc BAC
=> góc DAC = góc BAE
Xét tam giác DAC và tam giác BAE có :
góc DAC = góc BAE ( CMT )
AD = AB ( do tam giác ABD vuông cân tại A )
AC = AE ( do tam giác ACE vuông cân tại A )
=> tam giác DAC = tam giác BAE ( cgc )
=> DC = BE ( cặp cạnh tương ứng )
và góc ADC = góc ABE ( cặp góc tương ứng )
Gọi DC giao BE tại H
Gọi DC giao AB tại O
Do tam giác ADO vuông tại A ( GT )
=> góc ODA + góc DOA = 90 độ
Mà góc ODA = góc ABH ( CMT )
và góc DOA = BOH ( 2 góc đối đỉnh )
=> góc BOH + góc OHB = 90 độ
=> tam giác OBH vuông tại H
=> OH vuông góc BH
hay DC vuông góc BE
Vậy....
* Vì N và H lần lượt là trung điểm của AC và BC nên NH là đường trung bình của tam giác
Suy ra: NH// AB và
* Chứng minh tương tự, có MH là đường trung bìh của tam giác ABC nên:
MH// AN và
* Tứ giác AMHN có 2 các cạnh đối song song với nhau nên là hình bình hành
Lại có : ∠ B A C = 90 o nên tứ giác AMHN là hình chữ nhât.
* Theo giả thiết, tam giác ABC là tam giác vuông cân tại A nên AC = AB (3)
Từ (1); (2) và (3) suy ra: NH = MH.
Hình chữ nhật AMHN có hai cạnh liền kề NH và MH bằng nhau nên là hình vuông
Chọn đáp án A