A = \(10\times\left(\dfrac{1}{56}+\dfrac{1}{140}+\dfrac{1}{256}+....+\dfrac{1}{1400}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(=\dfrac{5}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{5}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{14}\)
a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)
=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11
=>32/x=1/3-1/11=8/33
=>x=32:8/33=132
b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)
=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16
=>x=90
c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)
=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=>22/x=1/10*11/2=11/20=22/40
=>x=40
Câu 1:
Ta có: \(\dfrac{x-4}{y-3}=\dfrac{4}{3}\)
=> \(3.\left(x-4\right)=4.\left(y-3\right)\)
=>\(3x-12=4y-12\)
=>\(3x=4y\) (1)
Ta có: \(x-y=5\)
=> \(y=y+5\) Thay vào (1) ta có:
\(3.\left(y+5\right)=4.\)y
=>\(3y+15=4y\)
=> \(15=4y-3y\)
=> 15 = y
=> y =15
ta có: x = y +5
=> x = 15 +5
=> x =20
Câu 2:
\(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(B=\dfrac{5}{28}+\dfrac{6}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(B=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(B=5,\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(3B=5.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{25.28}\right)\)
\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(3B=5.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(3B=5.\dfrac{3}{14}\)
\(B=\dfrac{15}{14}:3=\dfrac{5}{14}\)
Câu 3:
38 - (|x+10|+13) = \(\left(-6\right)^{20}:\left(9^9.4^{10}\right)\)
=> \(38-\left(\left|x+10\right|+13\right)=\left(2.3\right)_{ }^{20}:\)\(\left[\left(3^2\right)^9.\left(2^2\right)^4\right]\)
=>\(38-\left(\left|x+10\right|+13\right)=2^{20}.3^{20}:\left(3^{18}.2^{20}\right)\)
=> \(38-\left(\left|x+10\right|+13\right)=\dfrac{3^{20}.2^{20}}{3^{18}.2^{20}}\)
=> \(38-\left(\left|x+10\right|+13\right)=9\)
=> |x +10| + 13 = 38 -9
=> |x+10| +13 = 29
=> |x+10| = 29 -13
=> |x+10| = 16
\(\Rightarrow\left[{}\begin{matrix}x+10=16\\x+10=-16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-26\end{matrix}\right.\)
\(D=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}.\dfrac{6}{28}=\dfrac{5}{14}\)
\(E=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{24.25}=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right)=\dfrac{2.23}{50}=\dfrac{23}{25}.\)
\(\dfrac{D}{E}=\dfrac{5}{24}.\dfrac{25}{23}=\dfrac{125}{552}.\)
1: \(A=\dfrac{-25}{27}-\dfrac{31}{42}+\dfrac{7}{27}+\dfrac{3}{42}=\dfrac{-2}{3}-\dfrac{2}{3}=\dfrac{-4}{3}\)
2: \(B=\dfrac{10.3-\left(9.5-4.5\right)\cdot2}{1.2-1.5}=\dfrac{10.3-10}{-0.3}=-1\)
c: \(=\dfrac{3}{49}\left(\dfrac{19}{2}-\dfrac{5}{2}\right)-\left(\dfrac{1}{20}-\dfrac{5}{20}\right)^2\cdot\left(\dfrac{-7}{14}-\dfrac{193}{14}\right)\)
\(=\dfrac{3}{49}\cdot7-\dfrac{1}{25}\cdot\dfrac{-200}{14}\)
\(=\dfrac{3}{7}+\dfrac{8}{14}=1\)
\(A=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{140}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(3A=5\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-...-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=5\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)
\(=5.\dfrac{3}{14}=\dfrac{15}{14}\)
\(\Rightarrow A=\dfrac{15}{14}:3=\dfrac{15}{14}.\dfrac{1}{3}=\dfrac{5}{14}.\)
Vậy \(A=\dfrac{5}{14}.\)
mình ko hiểu chỗ 3A là gì?
Bạn giải thích giúp mình với
\(M=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{700}\)
\(M=\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+\dfrac{5}{10\cdot13}+...+\dfrac{5}{25\cdot28}\)
\(M=\dfrac{5}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{25\cdot28}\right)\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}\cdot\dfrac{3}{14}=\dfrac{5}{14}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(\Rightarrow B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(\Rightarrow\frac{3B}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)
\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)
\(\Rightarrow\frac{3B}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\Rightarrow\frac{3B}{5}=\frac{3}{14}\)
\(\Rightarrow B=\frac{3}{14}.\frac{5}{3}\)
\(\Rightarrow B=\frac{5}{14}\)
Vậy \(B=\frac{5}{14}\)