K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

\(A\le-1\forall x\)

Dấu '=' xảy ra khi x=0

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0;...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!

 

7 tháng 10 2021

\(a,E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\dfrac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(x>0;x\ne1\right)\\ E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}-1}\\ b,E>1\Leftrightarrow\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\\ \Leftrightarrow\sqrt{x}-1>0\left[x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\right]\\ \Leftrightarrow x>1\left(tm\right)\)

\(c,E=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}\\ E=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\ge2\sqrt{\dfrac{\sqrt{x}-1}{\sqrt{x}-1}}+2=2+2=4\\ E_{min}=4\Leftrightarrow\sqrt{x}-1=1\Leftrightarrow x=4\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Đề mắc lỗi hiển thị rồi. Bạn xem lại.

17 tháng 5 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

17 tháng 5 2021

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:
a.

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)

\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)

b.

$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$

$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$

$\Rightarrow A_{\min}=\frac{3}{4}$

Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$

29 tháng 1 2022

\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)

\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)

"=" khi x = y = 1/2

29 tháng 1 2022

giúp mình voi ah

 

8 tháng 4 2021

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)

Vậy với x = 4 thì A = 3/4 

b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )

19 tháng 6 2023

\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)

Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=0\)

Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)