K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

10 tháng 10 2023

loading...  loading...  loading...  

`8x^4y^5z^3 : 2x^3y^4z`

`= 4xyz^2`.

16 tháng 12 2021

\(\dfrac{3}{2x^2+y}+\dfrac{5}{xy^2+}+\dfrac{x}{y^3}\)

=\(\dfrac{3xy^5}{xy^2.y^3\left(2x^2+y\right)+}+\dfrac{10y^3x^2+5y^4}{xy^2.y^3\left(2x^2+y\right)}+\dfrac{2x^4y^2+x^2y^3}{xy^2.y^3\left(2x^2+y\right)}\)

=\(\dfrac{3xy^5+10y^3x^2+5y^4+2x^4y^2+x^2y^3}{xy^5\left(2x^2+y\right)}\)

=\(\dfrac{3xy^5+11y^3x^2+5y^4+2x^4y^2}{xy^5\left(2x^2+y\right)}\)

 

   ủa đáp án cứ sao sao:<

 

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

17 tháng 12 2020

MTC = (x - y)(x2 + xy + y2)

\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

16 tháng 12 2020

1/x-y-3xy/x^3-y^3+x-y/x^2+xy+y^2

=1/x-y+-3xy/(x-y)(x^2+xy+y^2)+x-y/x^2+xy+y^2

=x^2+xy+y^2/(x-y)(x^2+xy+y^2)+-3xy/(x-y)(x^2+xy+y^2)+x^2-2xy+y^2/(x-y)(x^2+xy+y^2)

=x^2+xy+y^2-3xy+x^2-2xy-y^2/(x-y)(x^2+xy+y^2)

=2x^2-5xy/(x-y)(x^2+xy+y^2)

27 tháng 7 2018

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-z\right)\left(y-x\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

Phân tích tử thức ta có:

\(TS=x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\)

\(=x^2\left(z-y\right)-y^2\left[\left(z-y\right)+\left(y-x\right)\right]+z^2\left(y-x\right)\)

\(=x^2\left(z-y\right)-y^2\left(z-y\right)-y^2\left(y-x\right)+z^2\left(y-x\right)\)

\(=\left(z-y\right)\left(x^2-y^2\right)+\left(y-x\right)\left(z^2-y^2\right)\)

\(=\left(z-y\right)\left(x-y\right)\left(x+y\right)+\left(y-x\right)\left(z-y\right)\left(z+y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(-x-y+z+y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

Vậy  \(A=1\)

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

`a, 20x^3y^5 : 5x^2y^2`

`= (20:5)x^(3-2) . y^(5-2)`

`= 4xy^3`

`b, 18x^3y^5 : (3(-x^3)y^2)`

`= -(18:3)y^(5-3)`

`= -6y^2`

23 tháng 7 2023

a) \(18x^4y^3:12\left(-x\right)^3y\)

\(=\left(18:-12\right)\left(x^4:x^3\right)\left(y^3:y\right)\)

\(=-\dfrac{3}{2}xy^2\)

b) \(x^2y^2-2xy^3:\dfrac{1}{2}xy^2\)

\(=\dfrac{xy^2\left(x-2y\right)}{\dfrac{1}{2}xy^2}\)

\(=\dfrac{x-2y}{\dfrac{1}{2}}\)

\(=2x-4y\)

23 tháng 7 2023

\(a,\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\\ =\dfrac{\left(x-3\right)\left(x+3\right)}{x-2}\times\dfrac{x}{x-3}\\ =\dfrac{x\left(x+3\right)}{\left(x-2\right)}\)

\(b,\dfrac{x}{z^2}.\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\\ =\dfrac{x}{z^2}.\dfrac{xz}{y^3}.\dfrac{yz}{x^3}=\dfrac{x^2yz^2}{z^2y^3x^3}=\dfrac{1}{xy^2}\)

\(c,\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}.\dfrac{x^2}{2}\\ =\dfrac{2}{x}-\dfrac{2}{x}\times\dfrac{x}{1}+\dfrac{4x^2}{2x}\\ =\dfrac{2}{x}-\dfrac{2}{1}+2x\\ =\dfrac{2-2x+2x^2}{x}\)

23 tháng 7 2023

a) \(\dfrac{x^2-9}{x-2}:\dfrac{x-3}{x}\)

\(=\dfrac{\left(x+3\right)\left(x-3\right)}{x-2}\cdot\dfrac{x}{x-3}\)

\(=\dfrac{x\left(x+3\right)}{x-2}\)

b) \(\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}:\dfrac{x^3}{yz}\)

\(=\dfrac{x}{z^2}\cdot\dfrac{xz}{y^3}\cdot\dfrac{yz}{x^3}\)

\(=\dfrac{1}{xy^2}\)

c) \(\dfrac{2}{x}-\dfrac{2}{x}:\dfrac{1}{x}+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)

\(=\dfrac{2}{x}-\dfrac{2}{x}\cdot x+\dfrac{4}{x}\cdot\dfrac{x^2}{2}\)

\(=\dfrac{2}{x}\cdot\left(1-x+2\right)\)

\(=\dfrac{2}{x}\cdot\left(3-x\right)\)

\(=\dfrac{6}{x}-2\)